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Abstract— Regardless the fact that micro-architecture design 
has reached a very high level of complexity to overcome the 
restrains of Moore’s Law, memory systems remain a 
bottleneck for processing systems. Taking that into account, 
this paper presents a model that simulates the conflict between 
cores for the use of shared resources, i.e. cache memory, on a 
multi-core processor and illustrates the impact of that conflict 
on the global performance of the system, using an example of 
Game Theory, namely Public Goods Game. In this context, 
Cellular Automata are the computational tool selected, in 
order to encapsulate the local dynamics realized on a multi-
core system. Moreover, in order to validate the applicability of 
the model, the behavior of multicore applications running on a 
regular multi-core system, were profiled and compared with 
the results obtained from the model. This comparison 
illustrated that the performance of system simulated by the 
model is in good agreement with the profiling results of the 
real system configuration.  

Keywords-component; cellular automata; game theory; 
multi-core systems; memory resources allocation 

I.  INTRODUCTION  
Nowadays multi-core processors have a key role in 

computer industry, being a mainstream in the computer 
market. Also, they steer computing performance in higher 
standards. However, the continuous need for more power 
and, at the same time, energy efficient systems, leads to more 
complicated solutions, such as processors with higher 
amount of cores on one chip [1], [2] and more complex 
architectural and memory structures. On the other hand, the 
development of operating systems (OS) has not produced a 
rather sufficient method of leveraging the new hardware. 
Moreover, memory systems are still a huge bottleneck 
compared to the high clock frequencies of processors, taking 
into consideration the fact that for die area economy, some 
memory systems are shared to many cores of the processor. 
Some innovative architectural methods, like prefetching and 
out-of-order execution, that aim to decrease the latency 
introduced by memory do not have the same effects on every 
case [3]. The gap between processor and memory 
performance, that was early foreseen [4], will continue to 
grow.  

In order to deal with this problem, the research 
community produced a wealth of studies, on how 

applications can be co-scheduled in different cores of a 
processor so as to use efficiently the common resources and 
more specifically the, die-area expensive, on-chip memory. 
Some methods are based on software [3, 5, 6], while others 
on hardware [7, 8]. Moreover, some rely on both software 
and hardware [9, 10]. The vast majority of that research is 
confirming the fact that two applications, thus the cores 
executing them, can “cooperate” over common resources, or 
“contend” for the selfish occupation of it. The term 
“cooperation” is leading to game theory, which is defined as 
the analysis of mathematical prototypes of collaboration and 
antagonism between intelligent rational decision-makers 
[11].  

Furthermore, one of the most fitting, here, example of 
game theory is the public goods game (PGG) [13], because 
there are cores that compete for public resources, which are 
affected by the decisions made. Moreover, to be consistent 
with the technology advances, Cellular Automata (CA) 
concept can be considered as a wise choice, taking into 
account that processors are designed with greater amount of 
cores, which are found in a more mesh or grid-like regular 
structure inside the processor and the distribution of the 
shared resources is becoming more complex [1], [2]. For 
instance Intel’s Single-Chip Cloud Computer (SCC), which 
is an experimental multi-core processor, has 48 Pentium 
(P54C) cores in 24 tiles of two cores each and the tiles are 
connected by a four by six mesh in the chip. This is an issue 
that CA can deal with, due to their ability to capture 
inhomogeneities with their local rule when local interactions 
appear.  

As a result, a model was produced using game theory 
concepts, and more specifically PGG, on CA lattice, to 
simulate the impact of the conflict of cores for shared Last 
Level Cache (LLC) resources. The results of the model 
compared to the performance of the applications on a real 
system are found in good agreement, particularly taking into 
account the simplicity of the model and the, relatively, 
hardware agnostic method used.  

The remainder of the paper is organized as follows. In 
Section II some related works and the motivation for the 
proposed model are discussed. In Section III, to make some 
definitions clear, a theoretical background of the presented 
model preliminaries is given, while in Section IV, the 
proposed model is described in full detail. Finally, in Section 
V the real system profiling methodology is presented and its 



results are compared with the results obtained from the 
proposed model. Conclusions and some future work are 
discussed in Section VI. 

II. RELATED WORK AND MOTIVATION 
A great amount of studies deal with the contention and 

cooperation over shared resources on a multi-core system. 
The majority of them review the shared on-chip memory 
impact on the overall performance of the system. As 
mentioned before, many researchers rely on software 
methods, others on hardware, while others combine the 
advantages gained from both methods. 

In specific, Zhao et al. presented a hybrid last-level cache 
design and examined the effects it had, in terms of miss and 
hit rate, for several significant server applications and multi-
programmed workloads [7]. In more detail, each cache slice 
was separated into a private and a shared slice and a 
directory cache was developed in order to point to the remote 
private cache location. The estimated effect of multi-
programmed and multi-threaded workloads, processed under 
the proposed architecture is the improvement of local hit rate 
up to 90% while keeping the miss rate close to that of a 
shared cache. 

Ebrahimi et al. realizes the need of a unified method that 
will treat fairly the entire shared memory system and 
suggested an inexpensive architectural technique, named 
Fairness via Source Throttling (FST) that permits the 
execution of software fairness policies, by enabling fair 
sharing of the entire memory system [8]. The mechanism of 
FST is gathering hardware metrics denoting the execution 
delay of different applications and, depending on that 
information, changes the combined memory requests of 
sources to scale these delays. 

On the other hand, from the software point of view 
several impressive results are presented. CASC [3], a cache-
aware operating system scheduling algorithm for 
multithreaded chip multiprocessors is proposed. CASC is 
based on scheduling together threads that when combined, 
perform low L2 cache miss rate and characterizing urgent, 
threads that demand a little proportion of the L2 cache. 
CASC results on a reduction of L2 miss rate that ranges from 
15% to 46% and throughput enhancement of the processor 
from 28% to 50%, by approximating the miss rate of L2 at 
runtime, without an important performance overhead. 

Moreover, Zhuravlev and his colleagues, investigated 
how and to what extent rivalry for shared resources can be 
reduced by implementing thread scheduling [5]. The most 
challenging aspect of this work is assumed to be the 
classification scheme for the threads that will decide the way 
they interfere with others, while defecting for shared 
resources. One of the outcomes of that work is that using 
information of the miss rates as the factor of the 
classification scheme, makes possible the diminishing of 
competition for shared resources by changing some 
scheduling options. Moreover, a scheduling method that is 
sensitive to contention, will enhance the global efficiency of 
the system. Finally, other aspects like memory controller, 
memory bus and prefetching hardware conflicts, are valuated 
as very important to the system’s performance, however in 

order to mitigate these conflicts, the reduction of the total 
number of cache misses is considered mandatory. As a 
result, two scheduling algorithms, namely Distributed 
Intensity and Distributed Intensity Online, were finally 
proposed. 

Tang et al. introduced a detailed investigation of 
datacenter applications interacting on the shared resources 
constituting a memory system [6]. An improvement of 25% 
for web search was realized, as a result of just efficient 
allocation of threads through cores. Consequently, 
optimizing the thread-to-core allocation of applications in 
datacenters is of paramount importance. Furthermore, 
important features of applications were studied, as these 
features affect the optimal thread-to-core allocation method. 

Nonetheless, researchers proved that methods that take 
advantage of both, software and hardware optimizations, 
present really good results. Following this principle, Ghosh 
et al. suggested hardware support for reducing the 
interference produced from L2 cache conflicts [9]. Three 
resource allocation algorithms were suggested, aiming to 
mitigate the interference. Jaleel et al. designed a method 
using both software and hardware for controlling the shared 
cache, named Cache Replacement and Utility-aware 
Scheduling (CRUISE) [10]. This method is aware of the 
LLC replacement policy applied and application cache utility 
information to dictate how the applications will be divided in 
the best way possible. Also, it was proved that the weight of 
software to intelligent scheduling was minimized from smart 
cache replacement; however the demand for determining the 
best application co-schedules was not completely eradicated. 
Furthermore, a Runtime Isolated Cache Estimator (RICE) 
was presented, a procedure using hardware to dynamically 
resolve the performance of an application on an isolated LLC 
while at the same time it uses the shared LLC. Finally, a 
categorization of applications by cache utility was proposed:  

• “Core Cache Fitting” Applications, 
• “LLC Thrashing” Applications, 
• “LLC Fitting” Applications and 
• “LLC Friendly” Applications. 
In an analogous mater, from a game-theoretic point of 

view, the applications can be categorized as fully defective, 
merely defective, and merely cooperative. This 
characterization will be based on their need for shared cache 
resources. 

III. THEORETICAL BACKGROUND 
In order to apprehend the dynamics between cooperation 

and competition, a mathematical tool is needed. Game theory 
is used vastly in occasions involving rational decision-
makers that their decisions interfere with each other gains. A 
commonly used paradigm of game theory is the PGG [13], 
which presents the interactions of individuals constituting a 
group. For instance, some individuals are awarded with an 
equal amount of money. Afterwards, the individuals are 
facing a challenge; to invest in total or a part of the initial 
amount awarded into a common pot, being aware that the 
common pot raised, will be multiplied and divided equally to 
all of them, regardless the contribution each one made. In the 
case that everyone invests the entire initial amount, everyone 



will get a greater amount of the money invested. Still, each 
one is tempted to "free-ride" on the investments made by 
other members of the group, since this way there is no risk 
for his initial capital. Assuming that all players follow this 
"rational" strategy, the initial capital will remain static [12].  

From a theoretical point of view, players participate in a 
public good game in groups of n players. The game is 
elapsed  t  rounds. On every round of the game, a player i 
obtains an award w and faces the dilemma on how to divide 
it. He must choose between an investment ci, to a public 
good, the common pot, and private utilization, w − ci. The 
total amount invested by the n members of a society is 
multiplied by β, β < n, and equally distributed to the n 
members [13]. Denoting m = β / n, m < 1, the payoff of 
player i at each round as a function of the contribution to the 
public good is illustrated by (1). Finally, at the beginning of 
the next round, the obtained award w for a player i, will be 
equal to the payoff πi gained by the player at the previous 
round. 

 𝜋𝜋𝑖𝑖 = 𝑤𝑤 − 𝑐𝑐𝑖𝑖 + 𝑚𝑚∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1   (1) 

In PGG, the public good or environment is depicted by 
the multiplication factor β, that in the case of remaining 
constant during the game, the public good cannot be totally 
consumed by players that adopt "wrong" strategies. The 
amounts that are chosen by the players for investment have 
an impact on the production of the common good that will be 
equally divided among them [15]. 

Common sense dictates that in a society that is donating 
itself with a public good, every individual constituting it will 
be highly tempted to become a free rider, meaning to give in 
little or nothing at all, with consequences to the welfare of 
the community and at the same time receiving the rewards 
everyone else receives. The fact that the phenomenon of free 
riders will cause the community to provide its members with 
less rewards, is also predicted by economic theory [14]. 
Moreover, supremacy of asocial, defecting strategies is 
prognosticated by traditional and evolutionary game theory. 
On the other hand, a permanent and strong willingness to 
cooperate in societies is significant [12]. It becomes 
impressive to differentiate from theoretical prognostications, 
granted the significant obstacles to establish and maintain 
cooperative behavior in large groups [16].  

However, the progress in theory and experiments has 
demonstrated some methods that are capable of encouraging 
cooperation. Many modifications of the classic PGG have 
been proposed, including spatial PGG [17], [18], and PGG in 
which the players are separated in groups [19]. In spatially 
extended systems cooperators can have great advantages 
when they form clusters that reduce exploitation through 
defectors [12]. As a result the use of Cellular Automata (CA) 
comes into hand, taking advantage of their ability to 
successfully depict local interactions and incorporate 
inhomogeneities in their local rule. 

CA are models of physical systems, where space and 
time are discrete and interactions are local [22]. In this 
section a formal definition of a CA will be presented [23]. In 
general, a CA requires: 

1. A regular lattice of cells covering a portion of a d–
dimensional space; 

2. A set ( ) ( ) ( ) ( ){ }trCtrCtrCtr , ..., ,,,,, m21=C of 
variables attached to each site r  of the lattice, 
giving the local state of each cell at the specific 
time value t; 

3. A rule R={R1, R2, …,Rm} which specifies the time 
evolution of the states ( )tr ,C in the following way: 

( ) ( ) ( )( )ttrRtrC qjj ,r ...,,1, δ+=+ C,C , where kr δ+

designate the cells which belong to a given 
neighbourhood of cell r . 

In the above definition, the rule R is identical for all sites 
and it is applied simultaneously to each of them, leading to 
synchronous dynamics. However, spatial (or even temporal) 
inhomogeneities can be introduced. Furthermore, in the 
above definition, the new state of a particular cell r at time 
t+1 is only a function of the previous state of the specific cell 
and of the cells which belong to its designated 
neighbourhood. The neighbourhood of cell r  is the spatial 
region in which a cell needs to search in its vicinity. For 2–d 
CA, two types of neighbourhood are usually considered: 
namely, von Neumann neighbourhood, which consists of a 
central cell (the one which is to be updated) and its four 
geographical neighbours north, west, south and east and 
Moore neighbourhood which contains, in addition, second 
nearest neighbours northeast, northwest, southeast and 
southwest, i.e. a total of nine cells, whereas the von 
Neumann neighbourhood comprises of only five cells. CA 
have sufficient expressive dynamics to represent phenomena 
of arbitrary complexity [24] and at the same time can be 
simulated exactly by digital computers, because of their 
intrinsic discreteness, i.e. the topology of the simulated 
object is reproduced in the simulating device [25]. The CA 
approach is consistent with the modern notion of unified 
space–time. In computer science, space corresponds to 
memory and time to processing unit. In CA, memory (CA 
cell state) and processing unit (CA local rule) are inseparably 
related to a CA cell. Moreover, the implementation of CA 
rules in VLSI circuits or FPGA logic will enhance their 
inherent parallel nature [26], [27]. Furthermore, they can 
easily handle complicated boundary and initial conditions, 
inhomogeneities and anisotropies. 

IV. THE PROPOSED MODEL 
As mentioned in Section II, the subject of many studies is 

the conflict and the cooperation for the shared system 
resources, between applications, and thus the cores that are 
assigned to complete them, on multi-core architectures. 
Consequently, a model is proposed here, to simulate that 
conflict between cores and to estimate its impact over the 
global system performance. The rules that apply on that 
situation are considered to be in accordance with the PGG 
described in Section III. It must be noted here, that the 
choice of representing cores as the players in a PGG, instead 
of applications or processes, is due to the fact that the model 



is hardware oriented and the profiling of the real system, in 
order to have a comparison, is made per core. Also, a 
simulation of the behavior of applications would have been 
much more complicated, because of some mechanisms used 
in the up-to-date processors, like CPU migrations.  

The individuals of the proposed model are regarded as 
the cores of a multi-core system and it is assumed that they 
are identical, thus they are represented as PGG players 
placed in CA cells in a square grid. The cores, in a real 
system, will be assigned with some tasks and will compete 
for the use of the shared memory. As a result, the reward of 
every CA cell will simulate the accessibility to the LLC of 
the system for approximately the same period of time for a 
single core. That means that the public good will be assumed 
to be the total amount of references to the available LLC for 
a time period. Moreover, the investment of a player placed in 
a CA cell in every round will correspond to the amount of 
LLC resources that the core does not need and can be used 
from other cores. As the amount of LLC accessibility by a 
core is modeled as the payoff of every player, the available 
common good through time depends on the payoffs of the 
players. 

The players of the proposed model are placed in a square 
CA grid. Each player interacts with his neighbors, as they 
constitute a community of a PGG. Furthermore, the type of 
the neighborhood and the boundary conditions can be altered 
in order to depict different shared cache systems. To simulate 
an architecture that is consistent with the up-to-date, easy to 
access, commercial multi-core processors and, more 
specifically, the processor (Intel Core i7 2600) used as 
described in Section V, the following choices were made. 
The neighborhood type selected was Moore, the boundary 
conditions are periodic and the grid is 3×3, in order to 
simulate a system of 9 players competing over a single 
shared LLC. By setting one player to busy mode, the 
resulting architecture is a community of 8 cores with one 
shared LLC. However, the model is not restricted by these 
options. Other architectures [1], [2] can be simulated by 
using a larger grid and neighborhood’s radius, however as 
these processors are not easy to access, this will be the 
subject for a future study. 

Another parameter of the model is the time steps, namely 
the game rounds, here empirically chosen equal to 100. 
Furthermore, the multiplication factor β is set to 6, a value 
lower than the amount of cores, n=8, in order to keep the 
social dilemma. The multiplication factor can be altered to a 
constant or dependant by time value to simulate different 
system circumstances. The gain of every player (i,j) on round 
t for the configuration described above is given by Equation 
(2).  

 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖,𝑗𝑗 )

𝑡𝑡 = 𝛽𝛽
𝑛𝑛

(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖−1,𝑗𝑗 ) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖,𝑗𝑗−1) +
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖+1,𝑗𝑗 ) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖,𝑗𝑗+1) +
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖−1,𝑗𝑗−1) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖−1,𝑗𝑗+1) +
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖+1,𝑗𝑗−1) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖+1,𝑗𝑗+1) +
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖,𝑗𝑗 ))    (2) 

Moreover, the payoff of every player (i,j) on round t, is 
given by Equation (3). 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑗𝑗 )

𝑡𝑡 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑗𝑗 )
𝑡𝑡−1 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖,𝑗𝑗 ) + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖,𝑗𝑗 )

𝑡𝑡   (3) 

Furthermore, the amount of the investment of every 
player is determined by the strategy it adopts. Players with 
investment value 0 are defectors and represent cores that 
need an excessive amount of LLC. Also, players choosing 
investment value 1, namely cooperators, represent cores that 
need a very small amount of LLC and do not interfere 
significantly with the others’ needs. Moreover, every player 
can choose intermediate values to invest, simulating the 
proportional need of LLC. 

Finally, the total payoff of a core at the end of the last 
round will be the sum of the rewards obtained for all 
previous rounds. As the payoff of each player on one round 
represents the ability to access the same amount of LLC of 
the system for a period of time, the total payoff of the group 
will represent the available utilization of the LLC that is 
corresponding to the performance of the system. 

V. METRICS 
In order to evaluate the results of the model, metrics on a 

real system have been obtained. For the acquisition of these 
metrics the system described in Table I was used. Intel Core 
i7 2600 processor chip was used, which includes four CPU 
cores and on-chip cache memory on a 45nm die. Also, 
hyperthreading technology makes the software run as if there 
were eight processing units. Each of the four cores has a 
32KB instruction and a 32KB data Level 1 cache, and a 
256KB of Level 2 cache. However, the four physical cores, 
and the eight virtual, share an inclusive 8MB Level 3 cache, 
here denoted LLC. 

The multithread applications selected to run on the 
aforementioned system, are three of Phoenix MapReduce 
[20] runtime implementations, namely Word Count, 
Histogram and String Match. MapReduce framework is 
commonly used in distributed systems such as data centers or 
HPC and offers simplicity and scalability for the parallel 
programmers. Phoenix is a multi-core implementation of the 
MapReduce framework and it uses threads to spawn parallel 
Map or Reduce tasks. It also uses shared-memory buffers to 
facilitate communication. The runtime schedules tasks 
dynamically across the available processors [20]. 

Word Count counts the frequency of occurrence for each 
word in a file. String Match processes two files: the 
“encrypt” file contains a set of encrypted words and a “keys” 
file contains a list of non-encrypted words. The goal is to 
encrypt the words in the “keys” file to determine which 
words were originally encrypted to generate the “encrypt 
file”. Histogram analyzes a given bitmap image to compute 
the frequency of occurrence of a value in the 0-255 range for 
the RGB components of the pixels. Furthermore, the input 
files for every example used were the largest available from 
the developers of Phoenix [20], in order to simulate a 
situation that need a lot of resources. For String Match a 
500MB file was the “keys” file and the “encrypt” file was 



implemented in the user defined code, for Histogram a 
1.4GB file and for Word Count a 100MB file were used. As 
a result, Map functions that are executed in parallel on non-
overlapping portions of the input data, will require a lot of 
memory resources which are not considering the same 
process space. 

In order to obtain the profiling information from Phoenix 
MapReduce examples, Callgrind was used, a tool provided 
by Valgrind [21], an instrumentation framework for building 
dynamic analysis tools. Callgrind is a call-graph generating 
cache profiler that records the call history among functions 
in a program's run as a call-graph. Moreover a choice of 
cache simulation and branch prediction can be made, that 
generates more information about the runtime behavior of an 
application. Cache simulation used in Callgrind is based on 
that of Cachegrind, another tool provided by Valgrind. 

TABLE I.  SYSTEM’S SPECIFICATIONS 
Processor Intel Core i7-2600 

# of Threads 8 
Clock Speed 3.4 GHz 

L1 Data 32 KB 
LLC 8 MB 
RAM 16GB 

OS Ubuntu 12.04 
(Linux Kernel 3.2) 

 
Word Count was run ten (10) times and was profiled 

each time, in order to have a complete picture of its behavior 
under different scheduling schemes that were introduced 
during every run by the default scheduler of the operating 
system. Also, the same procedure was followed for 
Histogram and String Match. Phoenix parameters were not 
altered for any run and it used all 8 cores of the system. 

After ten (10) runs of Histogram with a 1.4GB file as 
input, the results from the profiling showed a little variation 
on execution time from a 3% faster to a 5% slower from the 
average. Also, the total LLC references experienced do not 
exceed 2.2% of data references, the LLC references per Kilo 
Instructions (RPKI) per core are pretty consistent, from 12 to 
14 (16 to an extreme situation) and as a result this 
application is little affected by the different scheduling 
schemes adopted by the operating system. In Fig. 1 the 
execution time for 10 runs of Histogram are depicted. 

 
Figure 1.  Histogram results. 

After ten (10) runs of String Match with a 500MB file as 
input, the results from the profiling demonstrated a 
negligible variation on execution time from 0.8% faster to 
1.38% slower from the average. Furthermore, the total LLC 
references experienced do not exceed 0.057% of data 
references, the LLC RPKI per core are from 0.2 to 0.4 (8 to 
an extreme situation). Due to these facts, this application is, 
also, slightly affected by the different scheduling schemes 
adopted by the operating system. In Fig. 2 the execution time 
for 10 runs of String Match are illustrated. 

 

Figure 2.  String Match results. 

Finally, Word Count was also profiled for ten (10) runs, 
using a 100MB as an input file. The results showed a 
significant variation on execution time from 9% faster to 
11% slower from the average time. Also, the total LLC 
references experienced approach 10% of data references and 
the LLC RPKI per core are extended from 9 to 78. Fig. 3 
depicts the execution time for 10 runs of Word Count. 
Consequently, in an application with a high total LLC 
references rate and LLC RPKI per core, threads scheduling 
and allocation of resources will have a significant effect. 
That can be realized after examining Fig. 4, where the 
normalized to the average execution time of the best and 
worst case are depicted. 

The simulation of two runs of Word Count was 
attempted with the proposed model. For these two runs the 
information used from the real system profiling was the LLC 
RPKI per core. As illustrated in Table II, these values were 
normalized to the doubled value of the average LLC RPKI 
per core for all runs. The average LLC RPKI per core is 
37.53, and the doubled value is 75.06. That way, threads that 
are more data intensive than others or have a high LLC 
RPKI, are indicated with values near 1. On the other hand, 
applications that do not need a large amount of LLC have a 
low LLC RPKI and their normalized values are near 0. 
Furthermore, cores with a high LLC RPKI, were simulated 
with defecting players, while cores with a low LLC RPKI, 
were simulated with cooperating players. As presented in 
Section IV, cooperators have investment value 1 and 
defectors 0. Consequently, the values that have been used as 
investment of every player in the model are presented in 
Table III and were produced from the subtraction of the 
normalized values of Table II from 1. Note that there are no 
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negative values; however these results are rounded to zero in 
order to represent free-riders. Finally, it must be noticed 
here, that the placement of the players on the CA grid is not 
changing the results, as the neighborhood, here, chosen is 
Moore, and the boundary conditions periodic, because the 
system simulated consists of 8 cores with one shared LLC. 

 

Figure 3.  Word Count results. 

 

Figure 4.  Normalized execution time for the best and worst case for the 
three application. 

TABLE II.  WORD COUNT THREADS LLC RPKI 

# thread First run’s 
LLC RPKI Norm. 

Second 
run’s LLC 

RPKI 
Norm. 

1 29.02 0.39 79.26 1.06 
2 36.70 0.49 15.45 0.21 
3 43.76 0.58 76.31 1.02 
4 27.30 0.36 67.10 0.89 
5 35.74 0.48 12.11 0.16 
6 9.72 0.13 9.58 0.13 
7 74.83 1.00 78.55 1.05 
8 51.47 0.69 11.17 0.15 

Using the results from the simulation with the model of 
the worst and the best case, a comparison between the 
theoretical model and the real system profiling can be drawn. 
The execution time for the first run of Word Count on a real 
system is 260 seconds, while for the second is 317. This 
means that the first run was 18% faster than the second. 
Moreover, the total payoff of the players composing the first 
model is 1963, while for the second 1754. Meaning the first 

configuration of players’ investment policies is 12% more 
efficient from the second. 

TABLE III.  WORD COUNT THREADS INVESTMENT VALUES FOR THE 
MODEL AND RESULTING PAYOFFS 

# thread First model 
investments Payoffs 

Second 
model 

investments 
Payoffs 

1 0.61 233 0.00 262 
2 0.51 243 0.79 184 
3 0.42 252 0.00 262 
4 0.64 230 0.11 251 
5 0.52 242 0.84 179 
6 0.87 207 0.87 176 
7 0.00 293 0.00 262 
8 0.31 263 0.85 178 

VI. CONCLUSION AND FUTURE WORK 
Drawing inspiration from the technological advances, a 

theoretical model was proposed that simulates the conflict 
between cores for the occupation of shared resources, and 
specifically the on-chip shared memory, on a multi-core 
processor and depicts its impact on the overall performance 
of the system, using an example of Game Theory, namely 
Public Goods Game. Furthermore, CA were used, in order to 
encapsulate the local dynamics realized on a multi-core 
system, as manufactures and designers tend to avoid long 
connections and are keen on local ones.  

The configuration used here to present the simulation of 
an up-to-date, easy to access, commercial multi-core 
processor, namely Intel Core i7 2600, was a 9 cell CA grid, 
with one busy cell, and the Moore neighborhood, because the 
processor has 8 threads and one shared LLC. The results of 
the model are found in good agreement with the real system 
profiling results, despite a variation that can be justified by 
the fact that the only information used is the LLC RPKI per 
core. However, it is shown that contention can be 
experienced to other shared resources too, such as the 
memory controller, memory bus and prefetching hardware 
[5]. 

Processor’s industry is producing continuously different 
architectures and complex systems that bear little 
resemblance to each other. As a result every different on-
chip memory hierarchy should be studied separately and 
simulated under a different configuration of the model. 
However, the choice of implementing the players on a CA 
grid, gives the model the opportunity to depict state-of-the-
art systems that use more complex on-chip memory 
architectures. For instance, another processor, i.e. the Dual 
Socket Intel Clovertown, which is studied in [6], that 
consists of eight cores and four L2 caches shared by two 
cores, can be simulated with a CA grid with different type of 
neighborhood and boundary conditions, in order to make 
every player interact with only one neighbor. However, the 
rules of the PPG will remain the same, with the exception of 
the multiplication factor that will have to represent a 
different public good. 

Also, the alternation of the multiplication factor from a 
constant value to a time-variable, will give the model the 
possibility of simulating a different type of environment in 
which the public good or the LLC availability will be 
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changing through time. Finally, players can adopt dynamic 
strategies, in contrary to the static ones adopted here, to 
simulate real life threads that alternate their needs, 
throughout the run-time. 
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