
Evaluating Conflicts Impact over Shared Last-Level Cache Using Public Goods Game
on Cellular Automata.

Michail-Antisthenis I. Tsompanas

Department of Electrical and
Computer Engineering

Democritus University of Thrace,
DUTH

Xanthi, Greece
mtsompan@ee.duth.gr

Christoforos Kachris
Department of Electrical and

Computer Engineering
Democritus University of Thrace,

DUTH
Xanthi, Greece

ckachris@ee.duth.gr

Georgios Ch. Sirakoulis
Department of Electrical and

Computer Engineering
Democritus University of Thrace,

DUTH
Xanthi, Greece

gsirak@ee.duth.gr

Abstract— Regardless the fact that micro-architecture design
has reached a very high level of complexity to overcome the
restrains of Moore’s Law, memory systems remain a
bottleneck for processing systems. Taking that into account,
this paper presents a model that simulates the conflict between
cores for the use of shared resources, i.e. cache memory, on a
multi-core processor and illustrates the impact of that conflict
on the global performance of the system, using an example of
Game Theory, namely Public Goods Game. In this context,
Cellular Automata are the computational tool selected, in
order to encapsulate the local dynamics realized on a multi-
core system. Moreover, in order to validate the applicability of
the model, the behavior of multicore applications running on a
regular multi-core system, were profiled and compared with
the results obtained from the model. This comparison
illustrated that the performance of system simulated by the
model is in good agreement with the profiling results of the
real system configuration.

Keywords-component; cellular automata; game theory;
multi-core systems; memory resources allocation

I. INTRODUCTION
Nowadays multi-core processors have a key role in

computer industry, being a mainstream in the computer
market. Also, they steer computing performance in higher
standards. However, the continuous need for more power
and, at the same time, energy efficient systems, leads to more
complicated solutions, such as processors with higher
amount of cores on one chip [1], [2] and more complex
architectural and memory structures. On the other hand, the
development of operating systems (OS) has not produced a
rather sufficient method of leveraging the new hardware.
Moreover, memory systems are still a huge bottleneck
compared to the high clock frequencies of processors, taking
into consideration the fact that for die area economy, some
memory systems are shared to many cores of the processor.
Some innovative architectural methods, like prefetching and
out-of-order execution, that aim to decrease the latency
introduced by memory do not have the same effects on every
case [3]. The gap between processor and memory
performance, that was early foreseen [4], will continue to
grow.

In order to deal with this problem, the research
community produced a wealth of studies, on how

applications can be co-scheduled in different cores of a
processor so as to use efficiently the common resources and
more specifically the, die-area expensive, on-chip memory.
Some methods are based on software [3, 5, 6], while others
on hardware [7, 8]. Moreover, some rely on both software
and hardware [9, 10]. The vast majority of that research is
confirming the fact that two applications, thus the cores
executing them, can “cooperate” over common resources, or
“contend” for the selfish occupation of it. The term
“cooperation” is leading to game theory, which is defined as
the analysis of mathematical prototypes of collaboration and
antagonism between intelligent rational decision-makers
[11].

Furthermore, one of the most fitting, here, example of
game theory is the public goods game (PGG) [13], because
there are cores that compete for public resources, which are
affected by the decisions made. Moreover, to be consistent
with the technology advances, Cellular Automata (CA)
concept can be considered as a wise choice, taking into
account that processors are designed with greater amount of
cores, which are found in a more mesh or grid-like regular
structure inside the processor and the distribution of the
shared resources is becoming more complex [1], [2]. For
instance Intel’s Single-Chip Cloud Computer (SCC), which
is an experimental multi-core processor, has 48 Pentium
(P54C) cores in 24 tiles of two cores each and the tiles are
connected by a four by six mesh in the chip. This is an issue
that CA can deal with, due to their ability to capture
inhomogeneities with their local rule when local interactions
appear.

As a result, a model was produced using game theory
concepts, and more specifically PGG, on CA lattice, to
simulate the impact of the conflict of cores for shared Last
Level Cache (LLC) resources. The results of the model
compared to the performance of the applications on a real
system are found in good agreement, particularly taking into
account the simplicity of the model and the, relatively,
hardware agnostic method used.

The remainder of the paper is organized as follows. In
Section II some related works and the motivation for the
proposed model are discussed. In Section III, to make some
definitions clear, a theoretical background of the presented
model preliminaries is given, while in Section IV, the
proposed model is described in full detail. Finally, in Section
V the real system profiling methodology is presented and its

results are compared with the results obtained from the
proposed model. Conclusions and some future work are
discussed in Section VI.

II. RELATED WORK AND MOTIVATION
A great amount of studies deal with the contention and

cooperation over shared resources on a multi-core system.
The majority of them review the shared on-chip memory
impact on the overall performance of the system. As
mentioned before, many researchers rely on software
methods, others on hardware, while others combine the
advantages gained from both methods.

In specific, Zhao et al. presented a hybrid last-level cache
design and examined the effects it had, in terms of miss and
hit rate, for several significant server applications and multi-
programmed workloads [7]. In more detail, each cache slice
was separated into a private and a shared slice and a
directory cache was developed in order to point to the remote
private cache location. The estimated effect of multi-
programmed and multi-threaded workloads, processed under
the proposed architecture is the improvement of local hit rate
up to 90% while keeping the miss rate close to that of a
shared cache.

Ebrahimi et al. realizes the need of a unified method that
will treat fairly the entire shared memory system and
suggested an inexpensive architectural technique, named
Fairness via Source Throttling (FST) that permits the
execution of software fairness policies, by enabling fair
sharing of the entire memory system [8]. The mechanism of
FST is gathering hardware metrics denoting the execution
delay of different applications and, depending on that
information, changes the combined memory requests of
sources to scale these delays.

On the other hand, from the software point of view
several impressive results are presented. CASC [3], a cache-
aware operating system scheduling algorithm for
multithreaded chip multiprocessors is proposed. CASC is
based on scheduling together threads that when combined,
perform low L2 cache miss rate and characterizing urgent,
threads that demand a little proportion of the L2 cache.
CASC results on a reduction of L2 miss rate that ranges from
15% to 46% and throughput enhancement of the processor
from 28% to 50%, by approximating the miss rate of L2 at
runtime, without an important performance overhead.

Moreover, Zhuravlev and his colleagues, investigated
how and to what extent rivalry for shared resources can be
reduced by implementing thread scheduling [5]. The most
challenging aspect of this work is assumed to be the
classification scheme for the threads that will decide the way
they interfere with others, while defecting for shared
resources. One of the outcomes of that work is that using
information of the miss rates as the factor of the
classification scheme, makes possible the diminishing of
competition for shared resources by changing some
scheduling options. Moreover, a scheduling method that is
sensitive to contention, will enhance the global efficiency of
the system. Finally, other aspects like memory controller,
memory bus and prefetching hardware conflicts, are valuated
as very important to the system’s performance, however in

order to mitigate these conflicts, the reduction of the total
number of cache misses is considered mandatory. As a
result, two scheduling algorithms, namely Distributed
Intensity and Distributed Intensity Online, were finally
proposed.

Tang et al. introduced a detailed investigation of
datacenter applications interacting on the shared resources
constituting a memory system [6]. An improvement of 25%
for web search was realized, as a result of just efficient
allocation of threads through cores. Consequently,
optimizing the thread-to-core allocation of applications in
datacenters is of paramount importance. Furthermore,
important features of applications were studied, as these
features affect the optimal thread-to-core allocation method.

Nonetheless, researchers proved that methods that take
advantage of both, software and hardware optimizations,
present really good results. Following this principle, Ghosh
et al. suggested hardware support for reducing the
interference produced from L2 cache conflicts [9]. Three
resource allocation algorithms were suggested, aiming to
mitigate the interference. Jaleel et al. designed a method
using both software and hardware for controlling the shared
cache, named Cache Replacement and Utility-aware
Scheduling (CRUISE) [10]. This method is aware of the
LLC replacement policy applied and application cache utility
information to dictate how the applications will be divided in
the best way possible. Also, it was proved that the weight of
software to intelligent scheduling was minimized from smart
cache replacement; however the demand for determining the
best application co-schedules was not completely eradicated.
Furthermore, a Runtime Isolated Cache Estimator (RICE)
was presented, a procedure using hardware to dynamically
resolve the performance of an application on an isolated LLC
while at the same time it uses the shared LLC. Finally, a
categorization of applications by cache utility was proposed:

• “Core Cache Fitting” Applications,
• “LLC Thrashing” Applications,
• “LLC Fitting” Applications and
• “LLC Friendly” Applications.
In an analogous mater, from a game-theoretic point of

view, the applications can be categorized as fully defective,
merely defective, and merely cooperative. This
characterization will be based on their need for shared cache
resources.

III. THEORETICAL BACKGROUND
In order to apprehend the dynamics between cooperation

and competition, a mathematical tool is needed. Game theory
is used vastly in occasions involving rational decision-
makers that their decisions interfere with each other gains. A
commonly used paradigm of game theory is the PGG [13],
which presents the interactions of individuals constituting a
group. For instance, some individuals are awarded with an
equal amount of money. Afterwards, the individuals are
facing a challenge; to invest in total or a part of the initial
amount awarded into a common pot, being aware that the
common pot raised, will be multiplied and divided equally to
all of them, regardless the contribution each one made. In the
case that everyone invests the entire initial amount, everyone

will get a greater amount of the money invested. Still, each
one is tempted to "free-ride" on the investments made by
other members of the group, since this way there is no risk
for his initial capital. Assuming that all players follow this
"rational" strategy, the initial capital will remain static [12].

From a theoretical point of view, players participate in a
public good game in groups of n players. The game is
elapsed t rounds. On every round of the game, a player i
obtains an award w and faces the dilemma on how to divide
it. He must choose between an investment ci, to a public
good, the common pot, and private utilization, w − ci. The
total amount invested by the n members of a society is
multiplied by β, β < n, and equally distributed to the n
members [13]. Denoting m = β / n, m < 1, the payoff of
player i at each round as a function of the contribution to the
public good is illustrated by (1). Finally, at the beginning of
the next round, the obtained award w for a player i, will be
equal to the payoff πi gained by the player at the previous
round.

 𝜋𝜋𝑖𝑖 = 𝑤𝑤 − 𝑐𝑐𝑖𝑖 + 𝑚𝑚∑ 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1 (1)

In PGG, the public good or environment is depicted by
the multiplication factor β, that in the case of remaining
constant during the game, the public good cannot be totally
consumed by players that adopt "wrong" strategies. The
amounts that are chosen by the players for investment have
an impact on the production of the common good that will be
equally divided among them [15].

Common sense dictates that in a society that is donating
itself with a public good, every individual constituting it will
be highly tempted to become a free rider, meaning to give in
little or nothing at all, with consequences to the welfare of
the community and at the same time receiving the rewards
everyone else receives. The fact that the phenomenon of free
riders will cause the community to provide its members with
less rewards, is also predicted by economic theory [14].
Moreover, supremacy of asocial, defecting strategies is
prognosticated by traditional and evolutionary game theory.
On the other hand, a permanent and strong willingness to
cooperate in societies is significant [12]. It becomes
impressive to differentiate from theoretical prognostications,
granted the significant obstacles to establish and maintain
cooperative behavior in large groups [16].

However, the progress in theory and experiments has
demonstrated some methods that are capable of encouraging
cooperation. Many modifications of the classic PGG have
been proposed, including spatial PGG [17], [18], and PGG in
which the players are separated in groups [19]. In spatially
extended systems cooperators can have great advantages
when they form clusters that reduce exploitation through
defectors [12]. As a result the use of Cellular Automata (CA)
comes into hand, taking advantage of their ability to
successfully depict local interactions and incorporate
inhomogeneities in their local rule.

CA are models of physical systems, where space and
time are discrete and interactions are local [22]. In this
section a formal definition of a CA will be presented [23]. In
general, a CA requires:

1. A regular lattice of cells covering a portion of a d–
dimensional space;

2. A set () () () (){ }trCtrCtrCtr , ..., ,,,,, m21=C of
variables attached to each site r of the lattice,
giving the local state of each cell at the specific
time value t;

3. A rule R={R1, R2, …,Rm} which specifies the time
evolution of the states ()tr ,C in the following way:

() () ()()ttrRtrC qjj ,r ...,,1, δ+=+ C,C , where kr δ+

designate the cells which belong to a given
neighbourhood of cell r .

In the above definition, the rule R is identical for all sites
and it is applied simultaneously to each of them, leading to
synchronous dynamics. However, spatial (or even temporal)
inhomogeneities can be introduced. Furthermore, in the
above definition, the new state of a particular cell r at time
t+1 is only a function of the previous state of the specific cell
and of the cells which belong to its designated
neighbourhood. The neighbourhood of cell r is the spatial
region in which a cell needs to search in its vicinity. For 2–d
CA, two types of neighbourhood are usually considered:
namely, von Neumann neighbourhood, which consists of a
central cell (the one which is to be updated) and its four
geographical neighbours north, west, south and east and
Moore neighbourhood which contains, in addition, second
nearest neighbours northeast, northwest, southeast and
southwest, i.e. a total of nine cells, whereas the von
Neumann neighbourhood comprises of only five cells. CA
have sufficient expressive dynamics to represent phenomena
of arbitrary complexity [24] and at the same time can be
simulated exactly by digital computers, because of their
intrinsic discreteness, i.e. the topology of the simulated
object is reproduced in the simulating device [25]. The CA
approach is consistent with the modern notion of unified
space–time. In computer science, space corresponds to
memory and time to processing unit. In CA, memory (CA
cell state) and processing unit (CA local rule) are inseparably
related to a CA cell. Moreover, the implementation of CA
rules in VLSI circuits or FPGA logic will enhance their
inherent parallel nature [26], [27]. Furthermore, they can
easily handle complicated boundary and initial conditions,
inhomogeneities and anisotropies.

IV. THE PROPOSED MODEL
As mentioned in Section II, the subject of many studies is

the conflict and the cooperation for the shared system
resources, between applications, and thus the cores that are
assigned to complete them, on multi-core architectures.
Consequently, a model is proposed here, to simulate that
conflict between cores and to estimate its impact over the
global system performance. The rules that apply on that
situation are considered to be in accordance with the PGG
described in Section III. It must be noted here, that the
choice of representing cores as the players in a PGG, instead
of applications or processes, is due to the fact that the model

is hardware oriented and the profiling of the real system, in
order to have a comparison, is made per core. Also, a
simulation of the behavior of applications would have been
much more complicated, because of some mechanisms used
in the up-to-date processors, like CPU migrations.

The individuals of the proposed model are regarded as
the cores of a multi-core system and it is assumed that they
are identical, thus they are represented as PGG players
placed in CA cells in a square grid. The cores, in a real
system, will be assigned with some tasks and will compete
for the use of the shared memory. As a result, the reward of
every CA cell will simulate the accessibility to the LLC of
the system for approximately the same period of time for a
single core. That means that the public good will be assumed
to be the total amount of references to the available LLC for
a time period. Moreover, the investment of a player placed in
a CA cell in every round will correspond to the amount of
LLC resources that the core does not need and can be used
from other cores. As the amount of LLC accessibility by a
core is modeled as the payoff of every player, the available
common good through time depends on the payoffs of the
players.

The players of the proposed model are placed in a square
CA grid. Each player interacts with his neighbors, as they
constitute a community of a PGG. Furthermore, the type of
the neighborhood and the boundary conditions can be altered
in order to depict different shared cache systems. To simulate
an architecture that is consistent with the up-to-date, easy to
access, commercial multi-core processors and, more
specifically, the processor (Intel Core i7 2600) used as
described in Section V, the following choices were made.
The neighborhood type selected was Moore, the boundary
conditions are periodic and the grid is 3×3, in order to
simulate a system of 9 players competing over a single
shared LLC. By setting one player to busy mode, the
resulting architecture is a community of 8 cores with one
shared LLC. However, the model is not restricted by these
options. Other architectures [1], [2] can be simulated by
using a larger grid and neighborhood’s radius, however as
these processors are not easy to access, this will be the
subject for a future study.

Another parameter of the model is the time steps, namely
the game rounds, here empirically chosen equal to 100.
Furthermore, the multiplication factor β is set to 6, a value
lower than the amount of cores, n=8, in order to keep the
social dilemma. The multiplication factor can be altered to a
constant or dependant by time value to simulate different
system circumstances. The gain of every player (i,j) on round
t for the configuration described above is given by Equation
(2).

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖,𝑗𝑗)

𝑡𝑡 = 𝛽𝛽
𝑛𝑛

(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖−1,𝑗𝑗) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖,𝑗𝑗−1) +
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖+1,𝑗𝑗) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖,𝑗𝑗+1) +
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖−1,𝑗𝑗−1) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖−1,𝑗𝑗+1) +
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖+1,𝑗𝑗−1) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖+1,𝑗𝑗+1) +
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖,𝑗𝑗)) (2)

Moreover, the payoff of every player (i,j) on round t, is
given by Equation (3).

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑗𝑗)

𝑡𝑡 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖,𝑗𝑗)
𝑡𝑡−1 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖,𝑗𝑗) + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖,𝑗𝑗)

𝑡𝑡 (3)

Furthermore, the amount of the investment of every
player is determined by the strategy it adopts. Players with
investment value 0 are defectors and represent cores that
need an excessive amount of LLC. Also, players choosing
investment value 1, namely cooperators, represent cores that
need a very small amount of LLC and do not interfere
significantly with the others’ needs. Moreover, every player
can choose intermediate values to invest, simulating the
proportional need of LLC.

Finally, the total payoff of a core at the end of the last
round will be the sum of the rewards obtained for all
previous rounds. As the payoff of each player on one round
represents the ability to access the same amount of LLC of
the system for a period of time, the total payoff of the group
will represent the available utilization of the LLC that is
corresponding to the performance of the system.

V. METRICS
In order to evaluate the results of the model, metrics on a

real system have been obtained. For the acquisition of these
metrics the system described in Table I was used. Intel Core
i7 2600 processor chip was used, which includes four CPU
cores and on-chip cache memory on a 45nm die. Also,
hyperthreading technology makes the software run as if there
were eight processing units. Each of the four cores has a
32KB instruction and a 32KB data Level 1 cache, and a
256KB of Level 2 cache. However, the four physical cores,
and the eight virtual, share an inclusive 8MB Level 3 cache,
here denoted LLC.

The multithread applications selected to run on the
aforementioned system, are three of Phoenix MapReduce
[20] runtime implementations, namely Word Count,
Histogram and String Match. MapReduce framework is
commonly used in distributed systems such as data centers or
HPC and offers simplicity and scalability for the parallel
programmers. Phoenix is a multi-core implementation of the
MapReduce framework and it uses threads to spawn parallel
Map or Reduce tasks. It also uses shared-memory buffers to
facilitate communication. The runtime schedules tasks
dynamically across the available processors [20].

Word Count counts the frequency of occurrence for each
word in a file. String Match processes two files: the
“encrypt” file contains a set of encrypted words and a “keys”
file contains a list of non-encrypted words. The goal is to
encrypt the words in the “keys” file to determine which
words were originally encrypted to generate the “encrypt
file”. Histogram analyzes a given bitmap image to compute
the frequency of occurrence of a value in the 0-255 range for
the RGB components of the pixels. Furthermore, the input
files for every example used were the largest available from
the developers of Phoenix [20], in order to simulate a
situation that need a lot of resources. For String Match a
500MB file was the “keys” file and the “encrypt” file was

implemented in the user defined code, for Histogram a
1.4GB file and for Word Count a 100MB file were used. As
a result, Map functions that are executed in parallel on non-
overlapping portions of the input data, will require a lot of
memory resources which are not considering the same
process space.

In order to obtain the profiling information from Phoenix
MapReduce examples, Callgrind was used, a tool provided
by Valgrind [21], an instrumentation framework for building
dynamic analysis tools. Callgrind is a call-graph generating
cache profiler that records the call history among functions
in a program's run as a call-graph. Moreover a choice of
cache simulation and branch prediction can be made, that
generates more information about the runtime behavior of an
application. Cache simulation used in Callgrind is based on
that of Cachegrind, another tool provided by Valgrind.

TABLE I. SYSTEM’S SPECIFICATIONS
Processor Intel Core i7-2600

of Threads 8
Clock Speed 3.4 GHz

L1 Data 32 KB
LLC 8 MB
RAM 16GB

OS Ubuntu 12.04
(Linux Kernel 3.2)

Word Count was run ten (10) times and was profiled

each time, in order to have a complete picture of its behavior
under different scheduling schemes that were introduced
during every run by the default scheduler of the operating
system. Also, the same procedure was followed for
Histogram and String Match. Phoenix parameters were not
altered for any run and it used all 8 cores of the system.

After ten (10) runs of Histogram with a 1.4GB file as
input, the results from the profiling showed a little variation
on execution time from a 3% faster to a 5% slower from the
average. Also, the total LLC references experienced do not
exceed 2.2% of data references, the LLC references per Kilo
Instructions (RPKI) per core are pretty consistent, from 12 to
14 (16 to an extreme situation) and as a result this
application is little affected by the different scheduling
schemes adopted by the operating system. In Fig. 1 the
execution time for 10 runs of Histogram are depicted.

Figure 1. Histogram results.

After ten (10) runs of String Match with a 500MB file as
input, the results from the profiling demonstrated a
negligible variation on execution time from 0.8% faster to
1.38% slower from the average. Furthermore, the total LLC
references experienced do not exceed 0.057% of data
references, the LLC RPKI per core are from 0.2 to 0.4 (8 to
an extreme situation). Due to these facts, this application is,
also, slightly affected by the different scheduling schemes
adopted by the operating system. In Fig. 2 the execution time
for 10 runs of String Match are illustrated.

Figure 2. String Match results.

Finally, Word Count was also profiled for ten (10) runs,
using a 100MB as an input file. The results showed a
significant variation on execution time from 9% faster to
11% slower from the average time. Also, the total LLC
references experienced approach 10% of data references and
the LLC RPKI per core are extended from 9 to 78. Fig. 3
depicts the execution time for 10 runs of Word Count.
Consequently, in an application with a high total LLC
references rate and LLC RPKI per core, threads scheduling
and allocation of resources will have a significant effect.
That can be realized after examining Fig. 4, where the
normalized to the average execution time of the best and
worst case are depicted.

The simulation of two runs of Word Count was
attempted with the proposed model. For these two runs the
information used from the real system profiling was the LLC
RPKI per core. As illustrated in Table II, these values were
normalized to the doubled value of the average LLC RPKI
per core for all runs. The average LLC RPKI per core is
37.53, and the doubled value is 75.06. That way, threads that
are more data intensive than others or have a high LLC
RPKI, are indicated with values near 1. On the other hand,
applications that do not need a large amount of LLC have a
low LLC RPKI and their normalized values are near 0.
Furthermore, cores with a high LLC RPKI, were simulated
with defecting players, while cores with a low LLC RPKI,
were simulated with cooperating players. As presented in
Section IV, cooperators have investment value 1 and
defectors 0. Consequently, the values that have been used as
investment of every player in the model are presented in
Table III and were produced from the subtraction of the
normalized values of Table II from 1. Note that there are no

140

145

150

155

160

165

1 2 3 4 5 6 7 8 9 10

Ex
ec

ut
io

n
ti

m
e

in
 s

ec
on

ds

Histogram runs

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1 2 3 4 5 6 7 8 9 10
Ex

ec
ut

io
n

ti
m

e
in

 s
ec

on
ds

String_match runs

negative values; however these results are rounded to zero in
order to represent free-riders. Finally, it must be noticed
here, that the placement of the players on the CA grid is not
changing the results, as the neighborhood, here, chosen is
Moore, and the boundary conditions periodic, because the
system simulated consists of 8 cores with one shared LLC.

Figure 3. Word Count results.

Figure 4. Normalized execution time for the best and worst case for the
three application.

TABLE II. WORD COUNT THREADS LLC RPKI

thread First run’s
LLC RPKI Norm.

Second
run’s LLC

RPKI
Norm.

1 29.02 0.39 79.26 1.06
2 36.70 0.49 15.45 0.21
3 43.76 0.58 76.31 1.02
4 27.30 0.36 67.10 0.89
5 35.74 0.48 12.11 0.16
6 9.72 0.13 9.58 0.13
7 74.83 1.00 78.55 1.05
8 51.47 0.69 11.17 0.15

Using the results from the simulation with the model of
the worst and the best case, a comparison between the
theoretical model and the real system profiling can be drawn.
The execution time for the first run of Word Count on a real
system is 260 seconds, while for the second is 317. This
means that the first run was 18% faster than the second.
Moreover, the total payoff of the players composing the first
model is 1963, while for the second 1754. Meaning the first

configuration of players’ investment policies is 12% more
efficient from the second.

TABLE III. WORD COUNT THREADS INVESTMENT VALUES FOR THE
MODEL AND RESULTING PAYOFFS

thread First model
investments Payoffs

Second
model

investments
Payoffs

1 0.61 233 0.00 262
2 0.51 243 0.79 184
3 0.42 252 0.00 262
4 0.64 230 0.11 251
5 0.52 242 0.84 179
6 0.87 207 0.87 176
7 0.00 293 0.00 262
8 0.31 263 0.85 178

VI. CONCLUSION AND FUTURE WORK
Drawing inspiration from the technological advances, a

theoretical model was proposed that simulates the conflict
between cores for the occupation of shared resources, and
specifically the on-chip shared memory, on a multi-core
processor and depicts its impact on the overall performance
of the system, using an example of Game Theory, namely
Public Goods Game. Furthermore, CA were used, in order to
encapsulate the local dynamics realized on a multi-core
system, as manufactures and designers tend to avoid long
connections and are keen on local ones.

The configuration used here to present the simulation of
an up-to-date, easy to access, commercial multi-core
processor, namely Intel Core i7 2600, was a 9 cell CA grid,
with one busy cell, and the Moore neighborhood, because the
processor has 8 threads and one shared LLC. The results of
the model are found in good agreement with the real system
profiling results, despite a variation that can be justified by
the fact that the only information used is the LLC RPKI per
core. However, it is shown that contention can be
experienced to other shared resources too, such as the
memory controller, memory bus and prefetching hardware
[5].

Processor’s industry is producing continuously different
architectures and complex systems that bear little
resemblance to each other. As a result every different on-
chip memory hierarchy should be studied separately and
simulated under a different configuration of the model.
However, the choice of implementing the players on a CA
grid, gives the model the opportunity to depict state-of-the-
art systems that use more complex on-chip memory
architectures. For instance, another processor, i.e. the Dual
Socket Intel Clovertown, which is studied in [6], that
consists of eight cores and four L2 caches shared by two
cores, can be simulated with a CA grid with different type of
neighborhood and boundary conditions, in order to make
every player interact with only one neighbor. However, the
rules of the PPG will remain the same, with the exception of
the multiplication factor that will have to represent a
different public good.

Also, the alternation of the multiplication factor from a
constant value to a time-variable, will give the model the
possibility of simulating a different type of environment in
which the public good or the LLC availability will be

245

255

265

275

285

295

305

315

325

1 2 3 4 5 6 7 8 9 10

Ex
ec

ut
io

n
ti

m
e

in
 s

ec
on

ds

Word_count runs

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

Word Count Histogram String Match

Normalized Execution Times

Average

Best case

Worst case

changing through time. Finally, players can adopt dynamic
strategies, in contrary to the static ones adopted here, to
simulate real life threads that alternate their needs,
throughout the run-time.

ACKNOWLEDGMENT
The research project is implemented within the

framework of the Action "Supporting Postdoctoral
Researchers" of the Operational Program "Education and
Lifelong Learning" (Action’s Beneficiary: General
Secretariat for Research and Technology), and is co-financed
by the European Social Fund (ESF) and the Greek State.

REFERENCES
[1] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J.

MacKay, M. Reif, B. Liewei, J. Brown, M. Mattina, M. Chyi-Chang,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D.
Khan, F. Montenegro, J. Stickney, and J. Zook, “TILE64 - Processor:
A 64-Core SoC with Mesh Interconnect,” IEEE International Solid-
State Circuits Conference Digest of Technical Papers, 2008, pp. 88.

[2] J. Howard, S. Dighe,Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D.
Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob,
S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M.
Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T.
Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van der Wijngaart, T.
Mattson, “A 48-Core IA-32 message-passing processor with DVFS in
45nm CMOS,” IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2010, pp. 108-109.

[3] A. Fedorova, M. Seltzer, M. Smith, and C. Small, “CASC: A Cache-
Aware Scheduler For Multithreaded Chip Multiprocessors” Sun Labs
Technical Report, March, 2005.
http://labs.oracle.com/projects/scalable/pubs/CASC.pdf

[4] W. Wulf, and S. McKee, “Hitting the Memory Wall: Implications Of
the Obvious,” ACM SIGARCH Computer Architecture News, vol.
23, issue 1, 1995, pp. 20- 24.

[5] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing Shared
Resource Contention in Multicore Processors via Scheduling,”
ASPLOS, 2010, pp. 129-142.

[6] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. Soffa, “The
Impact of Memory Subsystem Resource Sharing on Datacenter
Applications,” ISCA, 2011.

[7] L. Zhao, R. Iyer, M. Upton, and D. Newell, “Towards hybrid last
level caches for chip-multiprocessors.” SIGARCH Computer
Architecture. News, vol. 36, no. 2, 2008, pp. 56-63.

[8] E. Ebrahimi, C. Joo Lee, O. Mutlu, and Y. N. Patt, “Fairness via
source throttling: a configurable and high-performance fairness
substrate for multi-core memory systems,” SIGARCH Computer
Architecture News, vol. 38, no. 1, 2010, p.p. 335-346.

[9] M. Ghosh, R. Nathuji, M. Lee, K. Schwan, H.-H. S. Lee, “Symbiotic
Scheduling for Shared Caches in Multi-core Systems Using Memory
Footprint Signature,” In proceedings of International Conference on
Parallel Processing, 2011.

[10] A. Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C. Steely, and J.
Emer, “CRUISE: cache replacement and utility-aware scheduling,” In
Proceedings of the seventeenth international conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS XVII), 2012, pp. 249-260.

[11] R. B. Myerson, Game theory: Analysis of conflict, Harvard University
Press, 1991.

[12] Ch. Hauert, and G. Szabó, “Prisoner´s dilemma and public goods
games in different geometries: compulsory versus voluntary
interactions,” Complexity, vol. 8, no. 4, 2003, pp. 31-38.

[13] P. Brañas-Garza, and MP. Espinosa, “Unraveling Public Good
Games,” Games, vol. 2, no. 4, 2011, pp. 434-451.

[14] O. Kim, and M. Walker, “The free rider problem: Experimental
evidence,” Public Choice, vol. 43, 1984, pp. 3-24.

[15] G.Ch. Sirakoulis, and I. Karafyllidis, “Cooperation in a Power-Aware
Embedded System Changing Environment: Public Goods Games with
Variable Multiplication Factors,” IEEE Transactions on Systems,
Man, and Cybernetics–Part A: Systems and Humans, vol. 42, no. 3,
2012, pp.596-603.

[16] R. Boyd, and P.J. Richerson, “The evolution of reciprocity in sizeable
groups,” Theoretical Biology, vol. 132, no. 3, 1988, pp. 337-356.

[17] G. Szabò, and C. Hauert, “Phase transitions and volunteering in
spatial public goods games,” Phys. Rev. Lett., vol. 89, no. 11, Sep.
2002, pp. 101–118.

[18] C. Hauert, “Spatial effects in social dilemmas,” Theoretical Biology,
vol. 240, no. 4, Jun. 2006, pp. 627–636.

[19] M. A. Janssen, and R. L. Goldstone, “Dynamic-persistence of
cooperation in public goods game when group size is dynamic,”
Theoretical Biology, vol. 243, no. 1, Nov. 2006, pp. 134–142.

[20] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C. Kozyrakis.
“Evaluating MapReduce for Multi-core and Multiprocessor Systems,”
In Proc. 13th Intl. Symposium on High-Performance Computer
Architecture (HPCA), February 2007, pp. 13-24.

[21] J. Weidendorfer, M. Kowarschik, C. Trinitis, “A Tool Suite for
Simulation Based Analysis of Memory Access Behavior,”
Proceedings of the 4th International Conference on Computational
Science (ICCS 2004), Krakow, Poland, June 2004.

[22] J. von Neumann, Theory of Self-Reproducing Automata, University of
Illinois, Urbana, 1966.

[23] G. Ch. Sirakoulis, I. Karafyllidis, and A. Thanailakis, “A cellular
automaton model for the effect of population movement and
vaccination on epidemic propagation,” Ecological Modelling, vol.
133, no. 3, 2000, pp. 209-223.

[24] M.-A. I. Tsompanas, and G.Ch. Sirakoulis, “Modeling and hardware
implementation of an amoeba-like cellular automaton,”
Bioinspiration&Biomimetics, vol. 7, 036013 (19pp), 2012.

[25] P. Progias, and G. Ch. Sirakoulis, “An FPGA Processor for modelling
wildfire spreading,”Mathematical and Computer Modelling, vol. 57,
no. 5-6, 2013, pp. 1436–1452.

[26] G.Ch. Sirakoulis, and I. Karafyllidis, “Cellular Automata and Power
Consumption,” Journal of Cellular Automata, vol. 7, no. 1, 2012, pp.
67-80.

[27] K. Ioannidis, G. Ch. Sirakoulis, and I. Andreadis, “Cellular
Automata-based Architecture for Cooperative Miniature Robots,”
accepted for publication in Journal of Cellular Automata, 2013

http://www.researchgate.net/researcher/14076724_Mrinmoy_Ghosh/
http://www.researchgate.net/researcher/18732102_Ripal_Nathuji/
http://www.researchgate.net/researcher/70812020_Min_Lee/
http://www.researchgate.net/researcher/69616009_Karsten_Schwan/
http://www.researchgate.net/researcher/14076723_Hsien-Hsin_S_Lee/
http://iopscience.iop.org/1748-3190/

	Introduction
	Related Work And Motivation
	Theoretical Background
	The Proposed Model
	Metrics
	Conclusion and Future Work
	Acknowledgment
	References

