
Optimization of shared-memory multicore systems
using Game Theory and Genetic Algorithms on

Cellular Automata lattices.

Michail-Antisthenis I. Tsompanas
Department of Electrical and Computer

Engineering
Democritus University of Thrace,

DUTH
Xanthi, Greece

mtsompan@ee.duth.gr

Christoforos Kachris
Department of Electrical and Computer

Engineering
Democritus University of Thrace,

DUTH
Xanthi, Greece

ckachris@ee.duth.gr

Georgios Ch. Sirakoulis
Department of Electrical and Computer

Engineering
Democritus University of Thrace,

DUTH
Xanthi, Greece

gsirak@ee.duth.gr

Abstract— A main problem in multi-core architectures is the run-
time management and the allocation of shared resources, such as
the shared memory. This paper presents a model of the memory
resources allocation, in specific the on-chip shared memory, in
order to achieve higher performance based on the basic concepts
of game theory and the iterated spatial prisoner’s dilemma game,
with the help of adaptive computational tools like cellular
automata and genetic algorithms. The paper evaluates the
proposed scheme using multi-core applications that are based on
the MapReduce framework. The performance evaluation and the
simulation results show that the allocation of shared resources
based on game theory and genetic algorithms, can improve,
significantly, the overall performance of the multi-core
architectures.

Keywords— cellular automata, genetic algorithm, game theory,
cache memory, multicore systems

I. INTRODUCTION
Throughout history, improvements on performance of

microprocessors were achieved by increasing the frequency of
processors, and by increasing the amount of parallelism. In
recent years, it seems that existing techniques for increasing
instruction-level parallelism can hardly deliver marginal
performance improvements that track Moore’s Law due to
energy, heat, and wire delay issues [1]. As a result,
microprocessor industry focuses to thread-level parallelism
(TLP) by designing chips with multiple processors, known as
multicore processors. By extracting higher-level TLP on
multicore systems, performance will further improve, while
managing the technology issues faced by increasing the
performance of conventional single-core designs. Computer
companies invest on that direction, by rapidly increasing the
number of processing cores per chip. Using multicore
processors will rely on parallel software to achieve continuing
exponential performance gains. The majority of the
commercial parallel software relies on the shared-memory
programming model, in which all processors access the same
physical address space. Although processors logically access
the same memory, on-chip cache hierarchies are crucial to
achieve fast performance for the majority of memory
references made by processors. Thus a key problem of shared-

memory multicore processors is providing to each core, a
consistent view of memory with various cache hierarchies.

Therefore, there is a lot of interest in ways to achieve better
memory performance. Some recent work examines multiple
memory controllers (MCs) in a multi-core setting. Vantrease et
al. [13] discuss the interaction of MCs with the on-chip
network traffic and propose physical layouts for on-chip MCs
to reduce network traffic and minimize channel load. The
Tile64 processor [14] employs multiple MCs on a single chip,
accessible to every core via a specialized on-chip network. Tile
microprocessor [14] was one of the first processors to use
multiple (four) on-chip MCs. More recently, Abts et al. [2]
explored multiple MC placement on a single chip-
multiprocessor so as to minimize on-chip traffic and channel
load. None of the above considers intelligently allocating data
and load across multiple MCs. Kim et al. propose ATLAS [9],
a memory scheduling algorithm that improves system
throughput without requiring significant coordination between
N on-chip memory controllers. Mars et al. [10] halt low
priority processes when contention is detected. Herdrich et al.
[6] analyze the effectiveness of frequency scaling and clock
modulation to reduce shared resource contention. Awasthi et al.
[3] show that data migration and adaptive memory allocation
can be used to reduce memory controller overhead in systems
with multiple memory controllers.

The main concept here is the struggle of an individual core
to acquire some resources that are in common use, and so may
be useful for other cores too. So, what would be the best
strategy for that core; to acquire the resources for the time
needed, regardless the other cores’ needs? To acquire the
resources for some fragments of time and let the others use it
too, but making considerably longer to finish a task?
Consequently, game theory emerges and inspired by the local
interaction of the cores, each core of the under study processor,
can be represented as a Cellular Automaton (CA) cell and,
more specifically, as a player in a community with a predefined
number of CA neighbors, who will conflict for the occupancy
and procession of resources [12]. This concept gives the
opportunity to test various resources distribution strategies
against each other and, under some certain circumstances,

decide which configuration provides higher performance for
the system. Taking into account, the results from previous
works [12], it is safe to admit that dynamic strategies achieve
better scores, thus they are more efficient. Taking this fact into
consideration, a Genetic Algorithm (GA) is the best candidate,
because GAs, by definition, adapt to their environment, as they
are search procedures that mimic the mechanics of genetics and
natural selection. In other words, the usage of GAs, grants
greater variety of choices for the CA rules, the behavior of each
cell becomes more adaptive to real life needs of modern
memories, it is more difficult to drive some cells into resource-
starvation and the system becomes more balanced, as it uses
the most out of the memory without leaving cells without
resources.

Finally, in order to compare the behavior of the proposed
here model with the performance of real systems, metrics of a
parallel algorithm running on a multicore shared-memory
microprocessor were obtained. Phoenix [7] was used, an
implementation of MapReduce for shared-memory systems
that includes a programming API and an efficient runtime
system. These metrics were analyzed in order to depict the Last
Level Cache (LLC) references, a unit that directly correlates
with the execution time of an application, due to high latencies.
Using results from the profiling, for adjusting the parameters of
the model, provides the right circumstances to simulate the
behavior of the system. Finally, the strategies of the players
constituting the community were altered, introducing GA
strategy players, in order to compare the overall performance
of the system by using dynamic strategies. It should be noticed
that bearing in mind the alteration of memory system behavior
at every moment depending on different requests and
constraints, the implementation of GAs provide a adaptive
environment easy to follow up the requested strategy changes.
The comparison of the results, send out an optimistic message
for the increasing performance of multi-core systems, using
Game Theory and GA in CA, as a speed-up is estimated by the
proposed model by different task scheduling of the application.

This paper is organized as follows: In Section II, all the
necessary background on Game Theory, Cellular Automata
and Genetic Algorithms is provided, respectively. Section III
presents the simulation principles of the proposed model,
whereas in Section IV, the real multicore system configuration,
the metrics used and the connection between model and reality
are thoroughly described. In the end, the conclusions drawn
and future work are presented in Section V.

II. GAME THEORY, CELLULAR AUTOMATA AND GENETIC
ALGORITHMS

Game theory can be defined as the study of mathematical
models of conflict and cooperation between intelligent rational
decision-makers. Game theory provides general mathematical
techniques for analyzing situations in which two or more
individuals make decisions that will influence one another’s
welfare [8]. On the other hand, CA are models of physical
systems, where space and time are discrete and most important
interactions are local [21]. As a result, the application of game
theory to CA can be proved very promising for the
development of useful modeling tools.

Game theory provides mathematical tools to model,
structure and analyze interactive scenarios. The players in a
game may be, for example, competing firms or buyers and
sellers on the internet. The language and concepts of game
theory are widely used in economics, political science, biology,
and computer science, to name just a few disciplines. Game
theory helps to understand effects of interaction that seem
puzzling at first. Other insights come from the way of looking
at interactive situations. Game theory treats players equally and
recommends to each player how to play well, given what the
other players do [22]. This mindset is useful in strategic
questions of management, because “you put yourself in your
opponent’s shoes” [4]. Some of the “games” studied by game
theory are the Hawk-Dove game, the Tragedy of the
Commons, Stag hunt and the Prisoner's Dilemma [28].

Game theory is fascinating as a topic because of its diverse
applications. The ideas of game theory started with
mathematicians, most notably the outstanding mathematician
John von Neumann. In the 1950s, a group of young researchers
in mathematics at Princeton developed game theory further,
among them John Nash, Harold Kuhn and Lloyd Shapley, and
these pioneers can still, over 50 years later, be met at
conferences on game theory. Most research in game theory is
now done by economists and other social scientists [4].
However, game theory models found applications in the field
of technology too [22 – 24, 26].

A CA consists of a regular uniform n-dimensional lattice
(or array), usually of infinite extent. At each site of the lattice
(cell) a physical quantity takes on values. This physical
quantity is the global state of the CA, and the value of this
quantity at each site is its local state. The states at each cell are
updated simultaneously at discrete time steps, based on the
states in their neighborhood at the preceding time step. The
algorithm used to compute the next cell state is referred to as
the CA local rule. Usually the same local rule applies to all
cells of the CA. A CA is characterized by five properties [16,
17]:

1. the number of spatial dimensions (n);
2. the width of each side of the array (w). wj is the width of

the jth side of the array, where j = 1, 2, 3, …, n;
3. the width of the neighborhood of the cell (d). dj is the

width of the neighborhood along the jth side of the array;
4. the states of the CA cells;
5. the CA rule, which is an arbitrary function F.

The state of the r cell, at time step (t+1), is computed
according to F. F is a function of the state of this cell at time
step (t) and the states of the cells in its neighborhood at time
step (t). In the above definition, the function F is identical for
all sites and it is applied simultaneously to each of them,
leading to a synchronous dynamics. It is important to notice
that the rule is homogeneous, i.e. it does not depend explicitly
on the cell position r .However, spatial inhomogeneities can
be introduced by having some cell state)(rC j

 systematically
at 1, in some given locations of the lattice, to mark particular
cells for which a different rule applies. Furthermore, the new
state at time t+1 is only a function of the previous state at time
t. It is sometimes necessary to have a longer memory and
introduce a dependence on the states at times t-1, t-2, …, t-k.

Such a situation is already included in the definition, if one
keeps a copy of the previous state in the current state.

The neighborhood of cell r is the spatial region in which a
cell needs to search in its vicinity. In principle, there is no
restriction on the size of the neighborhood, except that it is the
same for all cells. However, in practice, it is often made up of
adjacent cells only. For two–dimensional CA, two
neighborhoods of range r are often considered: Von Neumann
neighborhood, defined as follows:

 }|||:|),{(00)0,0(ryyxxyxN N
yx ≤−+−= (1)

and Moore neighborhood, which can be described by the
following equation:

 }||,|:|),{(00)0,0(ryyrxxyxN M
yx ≤−≤−= (2)

In practice, when simulating a CA rule, it is impossible to
deal with an infinite lattice. The system must be finite and
have boundaries. Clearly, a site belonging to the lattice
boundary does not have the same neighborhood as other
internal sites. In order to define the behavior of these sites, the
neighborhood is extending for the sites at the boundary.
Extending the neighborhood leads to various types of
boundary conditions such as periodic (or cyclic), fixed,
adiabatic or reflection [18].

CA have sufficient expressive dynamics to represent
phenomena of arbitrary complexity and at the same time can be
simulated exactly by digital computers, because of their
intrinsic discreteness, i.e. the topology of the simulated object
is reproduced in the simulating device. The CA approach is
consistent with the modern notion of unified space–time. In
computer science, space corresponds to memory and time to
processing unit. In CA, memory (CA cell state) and processing
unit (CA local rule) are inseparably related to a CA cell [19]. In
addition, algorithms based on CA run quickly on digital
computers [20]. Models based on CA lead to algorithms which
are fast when implemented on serial computers, because they
exploit the inherent parallelism of the CA structure [19, 20,
12].

Using principles of Prisoner’s Dilemma (PD), a very popular
instance of game theory [28], on cellular automata lattices
seems as a powerful tool to simulate the dynamics of conflict
over shared resources. In the original two-person, one-shot
game the players have two options, cooperation (C) and
defection (D). Each player’s payoff depends on his choice and
the choice of his opponent. A typical payoff matrix is
illustrated in Table I.

To be more specific, for mutual cooperation each player
receives the reward R, two defectors receive the punishment P,
while a cooperator and defector receive the sucker’s payoff S
and the temptation T (to choose defection), respectively. For
the PD game the payoffs satisfy the ranking:

 SPRT >>> (3)

TABLE I. PRISONER’S DILEMMA PAYOFFS

 B

A

 Cooperate (C) Defect (D)

Cooperate (C)
3
3

5
0

Defect (D)
0
5

1
1

According to the assumption of the traditional game theory,
players make a rational decision to maximize their own
income. Consequently, they should choose defection
independently from the other player’s decision. For the iterated
PD game an additional constraint is assumed to provide the
highest total income for mutual cooperation [11]:

 RST 2<+ (4)

The question then, is to find under which conditions the
cooperation emerges when this game is played repeatedly [5].
The objective for each player is to collect the largest amount of
points which now requires that some overall strategy be
adopted. Furthermore, a spatial component can be added to the
game so that it is played on a square grid against multiple
partners.

GAs are search procedures that mimic the mechanics of
genetics and natural selection [25]. They provide robust
searching capabilities in complex problem solution spaces. A
possible solution, called a “chromosome”, contains smaller
building blocks referred to as “genes”. A set of chromosomes
is referred to as a “population”. A target function (whose value
we seek to optimise) provides the mechanism for evaluating
the solution represented by each chromosome. This function is
referred to as a “fitness function”, and the value assigned to
each chromosome, using the fitness function, is the
“chromosome fitness” [27]. The chromosome with the highest
fitness represents the optimal solution.

GAs start with a randomly chosen initial population. The
initial population comprises a relatively small number of
chromosomes. They produce the next generation by performing
three genetic operations on the initial population, namely
selection, crossover and mutation. Selection is a process that
selects superior chromosomes, i.e. those with the most optimal
fitness function values, which will survive to the next
generation, and also selects inferior chromosomes, which will
perish. A simple selection strategy is to allow a number of the
fittest chromosomes to survive, and to discard the less fit ones.
In every generation, crossover generates offspring by
exchanging genetic material between pairs of highly fitted
chromosomes. Crossover operation will be utilised, in order to
introduce novel combinations of the genetic material. After
crossover, chromosomes are subjected to mutation. A random
gene of a random chromosome is selected and mutated, by
changing its value from 0 to 1, or vice versa. Mutation
operation increases the population variability, thus helping to
prevent irrecoverable loss of potentially important information
concerning the solutions of the problem at hand. The iteration

stops when an arbitrarily acceptable solution is reached or after
a given number of generations.

III. SIMULATION
The proposed model is based on a simulation environment,

which generates a Spatial Iterated Prisoner’s Dilemma game on
a CA lattice. This simulation environment has been developed
using MATLAB. Considering the cores of a homogeneous
multicore system to be identical, they are represented by
players - CA cells, which are placed on a square grid. Here, the
Moore neighborhood was used. Furthermore, periodic and
adiabatic boundary conditions were selected in order to
simulate different configurations.

The equivalent of the model to a real-life multicore
processor’s behavior is the following. When a core is assigned
with high computation load, or it “defects”, it is natural that it
will require more shared memory resources in order to
complete it. Moreover, it was assumed that if there is no
available memory resources, the core, in need of them, must
wait until some resources are accessible, decreasing the
performance of the system. On the other hand, if a core
“cooperates” or is assigned with lower computation load, it
does not need too many resources, to accomplish a task.
Consequently, in a game of two cores, if both “defect” or need
resources, the payoff is 1/1, simulating the low performance of
the system, consisting of two “greedy” cores. However, if
neither needs excessive resources (cooperation) there is no
bottleneck experienced, and as a result the sum of the collected
score of both players is the highest possible (3/3). Finally if one
needs resources while the other does not, the performance of
the system is higher than the first example, but lower than the
latter (5/0).

To complete one round of the game, each player conflicts
with the players composing its neighborhood. The result of this
conflict, which is summed to the results gained from earlier
rounds, is subject to the moves each player does and shown in
Table I. If S(n) is the total score a player has achieved until
round n and P1, P2, P3 and P4 the payoffs from the interaction
between the player and each one of its neighbors on that round,
then its total score on the round n+1 will be:

() () 431 21 PPPPnSnS ++++=+ (5)

The choice of the move made for every round by each core
of the processor, i.e. player, is determined by the strategy (local
rule) of every CA cell. Note that for the rest of the manuscript
the term player, accordant with game theory terminology, will
be used.

Furthermore, altering the initialization parameters of the
proposed model, results in simulating systems with different
configurations. These parameters are the number of players
forming the CA grid, the local rule or strategy followed by
each player, the type of the CA neighborhood and the boundary
conditions of the grid.

The strategies that a player can adopt are separated into the
dynamic and the static ones. The static strategies are the
defective and the cooperative. Defective strategy is followed by
a player that always defects. Cooperative strategy is followed

by a player that always cooperates. The dynamic strategies are
the random, Tit-for-Tat and Pavlov strategy. Here, only
random strategy was used, which dictates the player to choose
with a specific possibility if he will defect or cooperate.
Moreover, Tit-for-Tat is followed by a player that cooperates
on the first round and then replicates the moves made by other
players and Pavlov is followed by a player that repeats its
former choice whenever it earns a high payoff like 5 or 3 and
switches that choice whenever it earns a low payoff like 1 or 0.

It must be pointed out that the initial model proposed in
[12], was altered in order to simulate the real multicore system
that was used for profiling. The model used here, was modified
from the initial in terms of the type of the CA neighborhood,
the size of the CA grid and the boundary conditions.
Furthermore, the possibilities of the Random strategy have
been calibrated based on data from the profiling of Phoenix
from its application to a multi-core processing system.

Moreover a new strategy is introduced in this paper that uses
a genetic algorithm (GA). The algorithm collects data from
every three rounds to decide the moves the player will do for
the next three rounds. It should be noted that different numbers
of rounds for the GA application were tested several times and
for different tactics in order to provide more fruitful results in
correspondence to the requested system performance. In
correspondence, the simulation has been initialized to run for
three rounds, in order to make it easier for the GA players to
choose the best chromosomes. For the first three rounds the
player cooperates with all his neighbors. After that and at the
end of every set of three rounds, the selection phase is initiated.
The fitness proportionate selection method is used in order to
find two superior chromosomes, from the available, which are
the moves the players’ neighbors did in these three games.
Using the philosophy of that method, the score of every
neighbor is normalized such that they sum up to 1, and then the
chromosomes are selected with probability similar to the value
of the normalized scores. As a result a strategy of a player with
a small score can also be selected.

Then, the algorithm decides the moves that the player will
follow in the next set of three games. This is done by the
Uniform Crossover method [29]. This method uses for the
offspring one of the parents’ gene with probability of 50%.
Moreover, although, mutation is a basic genetic operand in
GAs, this implementation limits its usage in less than 1%. This
choice was made, due to the fact that applying mutation in
every turn to a chromosome consisting of three bits, will alter
the chromosome by 30%, thus leading to huge alterations of
the GA proposed best solutions. For further understanding, the
outline of the genetic crossover strategy algorithm is presented:
Chromosome=“111” (The first three moves of the player is to
cooperate)
FOR 200 game rounds

IF (first round in a set of three)
Use 1st gene-bit of the present chromosome

ELSE IF (second round in a set of three)
Use 2nd gene-bit of the present chromosome

ELSE IF (third round in a set of three)
Use 3rd gene-bit of the present chromosome

END IF
IF (third round in a set of three)

Select with proper probability two chromosomes
(the last 3 moves of two neigbors)
Crossover the chromosomes (use with 50%
chance one of each chromosomes’ gene-bits)
Save the final chromosome (consisting three
moves-bits for the next three games)

 END IF
END FOR

IV. REAL MULTICORE SYSTEM CONFIGURATION AND
COMPARISON WITH THE RESULTS OF THE MODEL

In order to obtain metrics of a multicore system, Phoenix [7]
MapReduce runtime was used. MapReduce framework is
commonly used in distributed systems such as data centers or
HPC and offers simplicity and scalability for the parallel
programmers. Phoenix is a multi-core implementation of the
MapReduce framework and it uses threads to spawn parallel
Map or Reduce tasks. It also uses shared-memory buffers to
facilitate communication. The runtime schedules tasks
dynamically across the available processors. Phoenix was run
on a shared-memory system described in Table II.

Using the system described in Table II does not limit the
potentials of the proposed model. Note that the model can be
altered to simulate a high number of players, different type of
neighborhood and even another payoff table. Altering these
parameters can capture different trade-offs appearing in
different types of microprocessors.

TABLE II. PROCESSOR SPECIFICATIONS
Processor Intel Core i7-2600
of Cores 4

of Threads 8
Clock Speed 3.4 GHz

L1 Data 32 KB
L2 (Unified) 256 KB

Third Level (LLC) 8 MB
RAM 16GB

The application used for obtaining metrics was Word Count

of Phoenix. This application counts the frequency of
occurrence for each word in a set of files. Two datasets were
used for benchmarks, one consisting of 50MB and one of
100MB. These datasets were used because of their great sizes
that lead the cores to seek shared memory resources.

To analyze the behavior of Phoenix MapReduce, Callgrind
was used, a tool provided by Valgrind [15], an instrumentation
framework for building dynamic analysis tools. Callgrind is a
call-graph generating cache profiler that records the call history
among functions in a program's run as a call-graph. Optionally,
cache simulation and/or branch prediction can produce further
information about the runtime behavior of an application.

Two configurations were used for the scope of this work.

• For the first configuration, Phoenix was set to use 4 cores
in order to run Word Count, with a 50MB text file input.

• For the second configuration, Phoenix was set to use 8
cores in order to run Word Count, with input a 100MB
text file input.

The profiling results for these configurations that will be
used here are the LLC references, which are illustrated in Table
III, for each thread of the system. This metric was used because
of the high latency, and as a result the bottleneck encountered
in LLC memory. Ten runs for each configuration were
profiled, and the results from a random and the average run
were used in order to evaluate any variation in the performance
of the system, caused by scheduling, due to the fact that for all
runs, no parameter of Phoenix was altered.

This work is focused in the analysis of the LLC references
of each thread, because this is the main bottleneck in a
multicore processor. Obviously, L1 and L2 cache are very
important for the performance of a processor, however, here,
the subject is the conflict of the threads to obtain common
resources. As a result, the behavior of these caches is utilized
so as to have them as busy as possible along with the profiling
procedure, where the exact applications were running in order
to minimize the usage of these memories by MapReduce and
maximize the MapReduce interference with LLC

It must be noticed here, that Phoenix is really faster than the
times presented here. It takes from 3 to 4 seconds to carry out
any of the configurations. However, running Phoenix under the
profiling of Callgrind, decelerate the operations significantly.
As a result, to evaluate the performance of the system, the
normalized time elapsed will be used, as shown in Table IV.
Also the LLC references of every thread are normalized to the
higher value of the LLC references of one thread.

TABLE III. LLC REFERENCES FROM PROFILING RESULTS

#Thread
Random run

for first
configuration

Average run
for first

configuration

Random run
for second

configuration

Average run
for second

configuration

1 406.464.194 404.382.927 14.668.989 10.668.023

2 309.057.180 215.988.481 10.309.051 10.624.537

3 38.092.911 26.600.327 18.644.130 24.341.572

4 6.544.671 913.410 59.752.921 28.841.226

5 - - 14.372.546 40.294.950

6 - - 121.829.852 59.416.156

7 - - 39.084.467 85.406.044

8 - - 335.067.602 394.640.816

Time
elapsed

(sec)
294 273 534 506

In order to reproduce these behaviors with the theoretical
model, two configurations were also created.

• Firstly, to simulate the conflict among 4 cores, a grid of
2×2 players is set. The Moore neighborhood is selected
and the boundary conditions are adiabatic. As a result,
each player has 3 neighbors - all the other participants.

• Secondly, to simulate the conflict among 8 cores, a grid
of 3×3 players is set, but the central player is set to busy
mode, and as a result it does not interact with the others.
The Moore neighborhood is selected and the boundary
conditions are periodic. Consequently every player has 7
neighbors - all the other participants.

The strategies of the players used in the CA grid, were
chosen based on the data derived from Table IV. The
normalized to the highest LLC references amount, results
corresponds to the possibility of each player to defect. As a
result the player representing the most “greedy” core of the
processor, that has a normalized LLC references value of 1.00,
will adopt the defective strategy. The normalized to the highest
amount of LLC references, results with values under 0.08 are
considered of low significance for the simulation, as they refer
to LLC rarely, and so the threads acquiring these results are
simulated as players following cooperative strategy. For the
other threads, their metric results were rounded up and used as
the possibility of the random strategy to defect. The rounded
amounts were used in order to have a better understanding and
comparison of the type of strategy used. Note here, that as
Phoenix runtime assigns tasks dynamically [7] to threads and
some tasks may need more resources than others, using the
random strategy of the proposed model, is a safe choice.

Consequently, taking into account Table IV, for the random
run of the first configuration, there is a defective, a cooperative
and two random (one with 80% possibility to defect and the
other with 10%) players. For the average run there are two
cooperative, one defective and one random (with 50%
possibility to defect) player. Furthermore, for the random run
of the second configuration, there is one defective, four
cooperative and three random (with 40, 20 and 10% possibility
to defect) players. Finally, for the average run of the second
configuration, there is one defective, four cooperative and three
random (one with 20% and two with 10% possibility to defect)
players.

TABLE IV. NORMALIZED PROFILING RESULTS

#Thread
Random run

for first
configuration

Average run
for first

configuration

Random run
for second

configuration

Average run
for second

configuration

1 1 1 0,04 0,03

2 0,76 0,53 0,03 0,03

3 0,09 0,06 0,06 0,06

4 0,02 0,002 0,18 0,07

5 - - 0,04 0,10

6 - - 0,36 0,15

7 - - 0,12 0,22

8 - - 1 1

Normalized
time

elapsed
1 0.93 1 0.95

The results of these configurations acquired with the model
after 200 rounds are shown in Figs. 1 and 2 per thread and in
total in Table V. The score, the community of players

collected, as mentioned in Section II, corresponds to the LLC
references attempted by each core in a time interval.
Consequently, a higher total score means a higher performance
for the system, which can be translated as less execution time.
The reason for presenting the normalized score and the
inverted normalized score in Table V is to be able to compare
the results acquired by the model with the ones obtained from
profiling a real system.

Note that in Figs. 1 and 2, the x axis describes the strategy
of every player, participating in the game. The first line (blue)
describes the random run and the second line (red) the average
run of the application in the same configuration. Furthermore,
the y axis depicts the LLC references succeeded by every
player at the end of 200 rounds.

Furthermore, in order to increase the performance of the
system, the GA strategy was adopted by some players of the
community. The better performance of the system is expected
due to the fact that while there is the same computation load, it
is assigned to more threads than the previous configurations.
As a result, the load is evenly assigned and the system executes
the application faster and more efficiently. The simulation
configurations run for 200 rounds with the strategies described
above, with some strategies altered to GA.

TABLE V. RESULTS ACQUIRED WITH THE MODEL

Random run

for first
configuration

Average run
for first

configuration

Random run
for second

configuration

Average run
for second

configuration
Normalized

time
elapsed

1 0.93 1 0.95

Total score
of the

community
5662 6094 30884 31468

Normalized
score

1 1.076 1 1.02

Inverted
normalized

score
1 0.929 1 0.98

Figure 1. Results per core from simulation with 4 cores after 200 rounds.

The x axis represents the strategy followed by an individual player/core
throughout the Random and the Average run.

For the random run of the first configuration of the model,
simulating the 4 cores instance, the static strategies (defective

and cooperative) are changed into GA strategies. On the other
hand the random strategies remain, keeping the possibilities
used previously. This way the whole system becomes dynamic
and also uses an adaptive method to spread the load. The
results after 200 rounds for the random and the optimized run
are illustrated in Fig. 3.

Figure 2. Results per core from simulation with 8 cores after 200 rounds.

The x axis represents the strategy followed by an individual player/core
throughout the Random and the Average run.

Figure 3. Results per core from simulation with 4 cores after 200 rounds.

The x axis represents the strategy followed by an individual player/core
throughout the Random and the Optimized run.

Furthermore, for the random run of the second
configuration of the model, simulating the 8 cores instance,
three players were chosen to change their strategies (two
cooperative and the defective). Here, only three static strategies
change, because the computation load of the defective player
can be sufficiently divided to three players. Splitting the load of
one player to a bigger number of players, would have the
opposite results. The results after 200 rounds for the random
and the optimized run are illustrated in Fig. 4.

Finally, the comparison of the overall results of the
community for the random and the optimized runs, are
presented in Table VI. There is an increase in the performance
of the system, 10% for the first configuration and 2.3% for the
second configuration.

It must be pointed out, that for the optimization of the
system in both configurations, static strategies were chosen to
change into GA ones, because these strategies cannot reply to
the changing dynamics of random players – or in a real system
with the altering of memory needs by some cores. Furthermore,
many strategies were kept the same, in order to have a

comparison with the applications used in the profiling of the
real system.

Figure 4. Results per core from simulation with 8 cores after 200 rounds.

The x axis represents the strategy followed by an individual player/core
throughout the Random and the Optimized run.

TABLE VI. RESULTS ACQUIRED WITH THE MODEL

Random run

for first
configuration

Optimized
run for first

configuration

Random run
for second

configuration

Optimized
run for
second

configuration
Total score

of the
community

5662 6286 30884 31606

Normalized
score

1 1.11 1 1.023

Inverted
normalized

score
1 0.9 1 0.977

V. CONCLUSIONS AND DISCUSSION
In this paper, the memory resources of a multicore processor

system, in specific the on-chip memory per processor
redistribution, so as to meet higher performance based on the
basic concepts of game theory with the help of adaptive
computational tools like CAs, GAs and the iterated spatial
prisoner’s dilemma game was examined. The proposed model
originally intrigued by a classic model of the dynamics of
cooperation and noncooperation, namely the iterated spatial
prisoner’s dilemma, was depictured in a CA lattice and in order
to take advantage of “rational”, namely genetic, strategies used
the above game as the presented CA evolution rule.

In the view of the foregoing, software simulations were
established, in order to reproduce the results of the metrics
obtained by profiling tools running on a multicore shared-
memory system. As presented by the simulation results, it can
be safely admitted that the theoretical results can approach the
results of a real multicore system. However, the deflection
noticed to the theoretical results compared to the real system
metrics, can be explained by the simplicity of the model and
the use of specific metrics of the real system, namely, only
LLC references. Using metrics of more shared resources, such
as the communication bus, and a more complicated model,
will, assumingly, lead to more accurate simulations.

Moreover, the usage of adaptive strategies revealed the
potential enhancement of the performance of the system.
Nonetheless, the parameters that initialize the theoretical model
enable the simulation of the vast majority of multicore systems.
The most significant of these parameters are the number of
players, the type of neighborhood, the local rule strategy and
the payoff table.

Nevertheless, as future work, some more technical details
regarding the on-chip memory usage in multicore processors
could be also taken into account in order to alter the payoff
table to obtain results closer to the real system metrics. Some
strategies could be also further differed, after the mapping of
needs, for utilization of various resources, of often used
applications. Furthermore, profiling different configurations of
Phoenix MapReduce can provide more case studies to compare
with results from the model. These configurations may be
another amount of cores participating in the operation, another
amount of Map or Reduce workers and different amount of
tasks. Finally, the implementation of rational, more adaptive
strategies with the help of evolutionary or swarm intelligence
techniques in the proposed model, especially applied to the
selection of the under study CA rules could also lead to a
greater performance in memory management of the system.

ACKNOWLEDGMENT
The research project is implemented within the framework

of the Action "Supporting Postdoctoral Researchers" of the
Operational Program "Education and Lifelong Learning"
(Action’s Beneficiary: General Secretariat for Research and
Technology), and is co-financed by the European Social Fund
(ESF) and the Greek State.

REFERENCES
[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, D. Burger, “Clock Rate

versus IPC: The End of the Road for Conventional Microarchitectures,”
In Proceedings of the 27th Annual International Symposium on
Computer Architecture, June 2000, pp. 248–259.

[2] D. Abts, N. Jerger, J. Kim, D. Gibson, M. Lipasti, “Achieving
Predictable Performance through Better Memory Controller in Many-
Core CMPs,” In Proceedings of ISCA, 2009, pp. 451-461.

[3] M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian, A. Davis,
“Handling the problems and opportunities posed by multiple on-chip
memory controllers.” In Proc. 19th international conference on
PACT’10, 2010, pp.319-330.

[4] B. Stengel, Game Theory Basics, London School of Economics. 2008
[5] O. Durán, R. Mulet, “Evolutionary Prisoner's Dilemma in Random

Graphs,” Physica D,vol. 208(3-4), 2005, pp. 257-265.
[6] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha, J. Moses, “Rate-

based QoS techniques for cache/memory in CMP platforms.” In Proc.
23rd international conference on Supercomputing (ICS’09), 2009, pp.
479-488

[7] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C. Kozyrakis.
“Evaluating MapReduce for Multi-core and Multiprocessor Systems,” In
Proc. 13th Intl. Symposium on High-Performance Computer
Architecture (HPCA), February 2007, pp. 13-24.

[8] R. Myerson, Game Theory: Analysis of Conflict, Harvard University
Press. 1997

[9] Y. Kim, D. Han, O. Mutlu, M. Harchol-Balter, “ATLAS: A Scalable and
High-Performance Scheduling Algorithm for Multiple Memory
Controllers,” In Proc. 16th International Symposium on High
Performance Computer Architecture, 2010, pp. 1-12.

[10] J. Mars, N. Vachharajani, M. L. Soffa, R. Hundt, “Contention aware
execution: Online contention detection and response.” In Proc. 8th
annual IEEE/ACM international symposium on Code generation and
optimizatio}, CGO’10, pp. 257-265

[11] J. Vukov,G. Szabó, A. Szolnoki, “Evolutionary prisoner’s dilemma
game on Newman-Watts networks,” Physical Review E, vol. 77,
026109, 2008.

[12] M.I. Tsompanas, G.Ch; Sirakoulis, I. Karafyllidis, “Modeling memory
resources distribution on multicore processors using games on cellular
automata lattices,” in Proceedings of IPDPS, 2010, pp. 1-8.

[13] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. Jouppi, M.
Fiorentino, A. Davis, N. Binkert, R. Beausoleil, J.H. Ahn, “Corona:
System Implications of Emerging Nanophotonic Technology.” In
Proceedings of ISCA, 2008, pp. 153-164.

[14] D. Wentzlaff, P. Griffin, H. Hoffmann, Bao; Liewei B. Edwards, C.
Ramey, M. Mattina, M. Chyi-Chang, J.F. Brown, A. Agarwal, “On-Chip
Interconnection Architecture of the Tile Processor,” In IEEE Micro, vol.
27(5), 2007, pp. 15-31

[15] J. Weidendorfer, M. Kowarschik, C. Trinitis, “A Tool Suite for
Simulation Based Analysis of Memory Access Behavior,” Proceedings
of the 4th International Conference on Computational Science (ICCS
2004), Krakow, Poland, June 2004.

[16] G. Ch. Sirakoulis, I. Karafyllidis, A. Thanailakis, and V. Mardiris, “A
methodology for VLSI implementation of Cellular Automata algorithms
using VHDL,” Advances in Engineering Software, vol. 32, no. 3, 2001,
pp. 189-202.

[17] G. Ch. Sirakoulis, I. Karafyllidis, and A. Thanailakis, “A CAD system
for the construction and VLSI implementation of Cellular Automata
algorithms using VHDL,” Microprocessors and Microsystems, vol. 27,
no. 8, 2003, pp. 381-396.

[18] B. Chopard, and M. Droz. Cellular Automata Modelling of Physical
systems. Cambridge: Cambridge University Press, 1998.

[19] V. Mardiris, G. Ch. Sirakoulis, Ch. Mizas, I. Karafyllidis, and A.
Thanailakis, “A CAD system for modeling and Simulation of Computer
Networks using Cellular Automata,” IEEE Transactions on Systems,
Man and Cybernetics – Part C, vol. 38, no. 2, 2008, pp. 253-264.

[20] G. Ch. Sirakoulis, “A TCAD system for VLSI implementation of the
CVD process using VHDL,” Integration, the VLSI Journal, vol. 37, no.
1, 2004, pp. 63-81.

[21] J. von Neumann, Theory of Self-Reproducing Automata. University of
Illinois, Urbana, IL, 1966.

[22] G.Ch. Sirakoulis, and I. Karafyllidis, “Cooperation in a Power-Aware
Embedded System Changing Environment: Public Goods Games with
Variable Multiplication Factors,” IEEE Transactions on Systems, Man,
and Cybernetics–Part A: Systems and Humans, vol. 42, no. 3, 2012, pp.
596-603.

[23] J. Neel, A.B. Mackenzie, R. Menon, L.A. Dasilva, J.E.Hicks, J.H. Reed,
R.P. Gilles, “Using game theory to analyze wireless ad hoc networks,”
IEEE Communications Surveys and Tutorials, vol. 7, no. 4, 2005, pp.
46-56.

[24] A. MacKenzie, S. Wicker, “Game theory and the design of self-
configuring, adaptive wireless networks,” IEEE Communications
Magazine, vol. 39, no. 11, 2001, pp. 126-131.

[25] J.H. Holland, Adaptation in Natural and Artificial Systems. University
of Michigan Press, Michigan, 1975.

[26] D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, L. Torres,
"Temperature-Aware Distributed Run-Time Optimization on MP-SoC
Using Game Theory," Symposium on VLSI, 2008. ISVLSI '08. IEEE
Computer Society Annual, 2008, pp.375-380.

[27] A. Piwonska, F. Seredynski, “A Genetic Algorithm with a Penalty
Function in Selective Travelling Salesman Problem on a Road
Network,” 2011 IEEE International Parallel & Distributed Processing
Symposium, 2011, pp.381-387..

[28] S. H. Heap, Y. Varoufakis, Game Theory: A Critical Text. Routledge,
New York, 2004

[29] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Springer, 1998

	Introduction
	Game Theory, Cellular Automata and Genetic Algorithms
	Simulation
	Real Multicore System Configuration and Comparison with the Results of the Model
	Conclusions and Discussion
	Acknowledgment
	References

