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Abstract— A main problem in multi-core architectures is the run-
time management and the allocation of shared resources, such as 
the shared memory. This paper presents a model of the memory 
resources allocation, in specific the on-chip shared memory, in 
order to achieve higher performance based on the basic concepts 
of game theory and the iterated spatial prisoner’s dilemma game, 
with the help of adaptive computational tools like cellular 
automata and genetic algorithms. The paper evaluates the 
proposed scheme using multi-core applications that are based on 
the MapReduce framework. The performance evaluation and the 
simulation results show that the allocation of shared resources 
based on game theory and genetic algorithms, can improve, 
significantly, the overall performance of the multi-core 
architectures. 

Keywords— cellular automata, genetic algorithm, game theory, 
cache memory, multicore systems 

I.  INTRODUCTION 
Throughout history, improvements on performance of 

microprocessors were achieved by increasing the frequency of 
processors, and by increasing the amount of parallelism. In 
recent years, it seems that existing techniques for increasing 
instruction-level parallelism can hardly deliver marginal 
performance improvements that track Moore’s Law due to 
energy, heat, and wire delay issues [1]. As a result, 
microprocessor industry focuses to thread-level parallelism 
(TLP) by designing chips with multiple processors, known as 
multicore processors. By extracting higher-level TLP on 
multicore systems, performance will further improve, while 
managing the technology issues faced by increasing the 
performance of conventional single-core designs. Computer 
companies invest on that direction, by rapidly increasing the 
number of processing cores per chip. Using multicore 
processors will rely on parallel software to achieve continuing 
exponential performance gains. The majority of the 
commercial parallel software relies on the shared-memory 
programming model, in which all processors access the same 
physical address space. Although processors logically access 
the same memory, on-chip cache hierarchies are crucial to 
achieve fast performance for the majority of memory 
references made by processors. Thus a key problem of shared-

memory multicore processors is providing to each core, a 
consistent view of memory with various cache hierarchies.  

Therefore, there is a lot of interest in ways to achieve better 
memory performance. Some recent work examines multiple 
memory controllers (MCs) in a multi-core setting. Vantrease et 
al. [13] discuss the interaction of MCs with the on-chip 
network traffic and propose physical layouts for on-chip MCs 
to reduce network traffic and minimize channel load. The 
Tile64 processor [14] employs multiple MCs on a single chip, 
accessible to every core via a specialized on-chip network. Tile 
microprocessor [14] was one of the first processors to use 
multiple (four) on-chip MCs. More recently, Abts et al. [2] 
explored multiple MC placement on a single chip-
multiprocessor so as to minimize on-chip traffic and channel 
load. None of the above considers intelligently allocating data 
and load across multiple MCs. Kim et al. propose ATLAS [9], 
a memory scheduling algorithm that improves system 
throughput without requiring significant coordination between 
N on-chip memory controllers. Mars et al. [10] halt low 
priority processes when contention is detected. Herdrich et al. 
[6] analyze the effectiveness of frequency scaling and clock 
modulation to reduce shared resource contention. Awasthi et al. 
[3] show that data migration and adaptive memory allocation 
can be used to reduce memory controller overhead in systems 
with multiple memory controllers. 

The main concept here is the struggle of an individual core 
to acquire some resources that are in common use, and so may 
be useful for other cores too. So, what would be the best 
strategy for that core; to acquire the resources for the time 
needed, regardless the other cores’ needs? To acquire the 
resources for some fragments of time and let the others use it 
too, but making considerably longer to finish a task? 
Consequently, game theory emerges and inspired by the local 
interaction of the cores, each core of the under study processor, 
can be represented as a Cellular Automaton (CA) cell and, 
more specifically, as a player in a community with a predefined 
number of CA neighbors, who will conflict for the occupancy 
and procession of resources [12]. This concept gives the 
opportunity to test various resources distribution strategies 
against each other and, under some certain circumstances, 



decide which configuration provides higher performance for 
the system. Taking into account, the results from previous 
works [12], it is safe to admit that dynamic strategies achieve 
better scores, thus they are more efficient. Taking this fact into 
consideration, a Genetic Algorithm (GA) is the best candidate, 
because GAs, by definition, adapt to their environment, as they 
are search procedures that mimic the mechanics of genetics and 
natural selection. In other words, the usage of GAs, grants 
greater variety of choices for the CA rules, the behavior of each 
cell becomes more adaptive to real life needs of modern 
memories, it is more difficult to drive some cells into resource-
starvation and the system becomes more balanced, as it uses 
the most out of the memory without leaving cells without 
resources. 

Finally, in order to compare the behavior of the proposed 
here model with the performance of real systems, metrics of a 
parallel algorithm running on a multicore shared-memory 
microprocessor were obtained. Phoenix [7] was used, an 
implementation of MapReduce for shared-memory systems 
that includes a programming API and an efficient runtime 
system. These metrics were analyzed in order to depict the Last 
Level Cache (LLC) references, a unit that directly correlates 
with the execution time of an application, due to high latencies. 
Using results from the profiling, for adjusting the parameters of 
the model, provides the right circumstances to simulate the 
behavior of the system. Finally, the strategies of the players 
constituting the community were altered, introducing GA 
strategy players, in order to compare the overall performance 
of the system by using dynamic strategies. It should be noticed 
that bearing in mind the alteration of memory system behavior 
at every moment depending on different requests and 
constraints, the implementation of GAs provide a adaptive 
environment easy to follow up the requested strategy changes. 
The comparison of the results, send out an optimistic message 
for the increasing performance of multi-core systems, using 
Game Theory and GA in CA, as a speed-up is estimated by the 
proposed model by different task scheduling of the application.  

This paper is organized as follows: In Section II, all the 
necessary background on Game Theory, Cellular Automata 
and Genetic Algorithms is provided, respectively. Section III 
presents the simulation principles of the proposed model, 
whereas in Section IV, the real multicore system configuration, 
the metrics used and the connection between model and reality 
are thoroughly described. In the end, the conclusions drawn 
and future work are presented in Section V. 

II. GAME THEORY, CELLULAR AUTOMATA AND GENETIC 
ALGORITHMS 

Game theory can be defined as the study of mathematical 
models of conflict and cooperation between intelligent rational 
decision-makers. Game theory provides general mathematical 
techniques for analyzing situations in which two or more 
individuals make decisions that will influence one another’s 
welfare [8]. On the other hand, CA are models of physical 
systems, where space and time are discrete and most important 
interactions are local [21]. As a result, the application of game 
theory to CA can be proved very promising for the 
development of useful modeling tools. 

Game theory provides mathematical tools to model, 
structure and analyze interactive scenarios. The players in a 
game may be, for example, competing firms or buyers and 
sellers on the internet. The language and concepts of game 
theory are widely used in economics, political science, biology, 
and computer science, to name just a few disciplines. Game 
theory helps to understand effects of interaction that seem 
puzzling at first. Other insights come from the way of looking 
at interactive situations. Game theory treats players equally and 
recommends to each player how to play well, given what the 
other players do [22]. This mindset is useful in strategic 
questions of management, because “you put yourself in your 
opponent’s shoes” [4]. Some of the “games” studied by game 
theory are the Hawk-Dove game, the Tragedy of the 
Commons, Stag hunt and the Prisoner's Dilemma [28]. 

Game theory is fascinating as a topic because of its diverse 
applications. The ideas of game theory started with 
mathematicians, most notably the outstanding mathematician 
John von Neumann. In the 1950s, a group of young researchers 
in mathematics at Princeton developed game theory further, 
among them John Nash, Harold Kuhn and Lloyd Shapley, and 
these pioneers can still, over 50 years later, be met at 
conferences on game theory. Most research in game theory is 
now done by economists and other social scientists [4]. 
However, game theory models found applications in the field 
of technology too [22 – 24, 26].  

A CA consists of a regular uniform n-dimensional lattice 
(or array), usually of infinite extent. At each site of the lattice 
(cell) a physical quantity takes on values. This physical 
quantity is the global state of the CA, and the value of this 
quantity at each site is its local state. The states at each cell are 
updated simultaneously at discrete time steps, based on the 
states in their neighborhood at the preceding time step. The 
algorithm used to compute the next cell state is referred to as 
the CA local rule. Usually the same local rule applies to all 
cells of the CA. A CA is characterized by five properties [16, 
17]: 

1. the number of spatial dimensions (n); 
2. the width of each side of the array (w). wj is the width of 

the jth side of the array, where j = 1, 2, 3, …, n; 
3. the width of the neighborhood of the cell (d). dj is the 

width of the neighborhood along the jth side of the array; 
4. the states of the CA cells; 
5. the CA rule, which is an arbitrary function F. 

The state of the r  cell, at time step (t+1), is computed 
according to F. F is a function of the state of this cell at time 
step (t) and the states of the cells in its neighborhood at time 
step (t). In the above definition, the function F is identical for 
all sites and it is applied simultaneously to each of them, 
leading to a synchronous dynamics. It is important to notice 
that the rule is homogeneous, i.e. it does not depend explicitly 
on the cell position r .However, spatial inhomogeneities can 
be introduced by having some cell state )(rC j

  systematically 
at 1, in some given locations of the lattice, to mark particular 
cells for which a different rule applies. Furthermore, the new 
state at time t+1 is only a function of the previous state at time 
t. It is sometimes necessary to have a longer memory and 
introduce a dependence on the states at times t-1, t-2, …, t-k. 



Such a situation is already included in the definition, if one 
keeps a copy of the previous state in the current state. 

The neighborhood of cell r  is the spatial region in which a 
cell needs to search in its vicinity. In principle, there is no 
restriction on the size of the neighborhood, except that it is the 
same for all cells. However, in practice, it is often made up of 
adjacent cells only. For two–dimensional CA, two 
neighborhoods of range r are often considered: Von Neumann 
neighborhood, defined as follows: 

 }|||:|),{( 00)0,0( ryyxxyxN N
yx ≤−+−=  (1) 

and Moore neighborhood, which can be described by the 
following equation: 

 }||,|:|),{( 00)0,0( ryyrxxyxN M
yx ≤−≤−=  (2) 

In practice, when simulating a CA rule, it is impossible to 
deal with an infinite lattice. The system must be finite and 
have boundaries. Clearly, a site belonging to the lattice 
boundary does not have the same neighborhood as other 
internal sites. In order to define the behavior of these sites, the 
neighborhood is extending for the sites at the boundary. 
Extending the neighborhood leads to various types of 
boundary conditions such as periodic (or cyclic), fixed, 
adiabatic or reflection [18]. 

CA have sufficient expressive dynamics to represent 
phenomena of arbitrary complexity and at the same time can be 
simulated exactly by digital computers, because of their 
intrinsic discreteness, i.e. the topology of the simulated object 
is reproduced in the simulating device. The CA approach is 
consistent with the modern notion of unified space–time. In 
computer science, space corresponds to memory and time to 
processing unit. In CA, memory (CA cell state) and processing 
unit (CA local rule) are inseparably related to a CA cell [19]. In 
addition, algorithms based on CA run quickly on digital 
computers [20]. Models based on CA lead to algorithms which 
are fast when implemented on serial computers, because they 
exploit the inherent parallelism of the CA structure [19, 20, 
12]. 

Using principles of Prisoner’s Dilemma (PD), a very popular 
instance of game theory [28], on cellular automata lattices 
seems as a powerful tool to simulate the dynamics of conflict 
over shared resources. In the original two-person, one-shot 
game the players have two options, cooperation (C) and 
defection (D). Each player’s payoff depends on his choice and 
the choice of his opponent. A typical payoff matrix is 
illustrated in Table I.  

To be more specific, for mutual cooperation each player 
receives the reward R, two defectors receive the punishment P, 
while a cooperator and defector receive the sucker’s payoff S 
and the temptation T (to choose defection), respectively. For 
the PD game the payoffs satisfy the ranking:  

 SPRT >>>  (3) 
 

 
TABLE I.  PRISONER’S DILEMMA PAYOFFS 

 B 

A 

 Cooperate (C) Defect (D) 

Cooperate (C) 
3                           
3 

5                                   
0       

Defect (D) 
0                           
5 

1                                  
1 

According to the assumption of the traditional game theory, 
players make a rational decision to maximize their own 
income. Consequently, they should choose defection 
independently from the other player’s decision. For the iterated 
PD game an additional constraint is assumed to provide the 
highest total income for mutual cooperation [11]: 

 RST 2<+  (4) 

The question then, is to find under which conditions the 
cooperation emerges when this game is played repeatedly [5]. 
The objective for each player is to collect the largest amount of 
points which now requires that some overall strategy be 
adopted. Furthermore, a spatial component can be added to the 
game so that it is played on a square grid against multiple 
partners.  

GAs are search procedures that mimic the mechanics of 
genetics and natural selection [25]. They provide robust 
searching capabilities in complex problem solution spaces. A 
possible solution, called a “chromosome”, contains smaller 
building blocks referred to as “genes”. A set of chromosomes 
is referred to as a “population”. A target function (whose value 
we seek to optimise) provides the mechanism for evaluating 
the solution represented by each chromosome. This function is 
referred to as a “fitness function”, and the value assigned to 
each chromosome, using the fitness function, is the 
“chromosome fitness” [27]. The chromosome with the highest 
fitness represents the optimal solution.  

GAs start with a randomly chosen initial population. The 
initial population comprises a relatively small number of 
chromosomes. They produce the next generation by performing 
three genetic operations on the initial population, namely 
selection, crossover and mutation. Selection is a process that 
selects superior chromosomes, i.e. those with the most optimal 
fitness function values, which will survive to the next 
generation, and also selects inferior chromosomes, which will 
perish. A simple selection strategy is to allow a number of the 
fittest chromosomes to survive, and to discard the less fit ones. 
In every generation, crossover generates offspring by 
exchanging genetic material between pairs of highly fitted 
chromosomes. Crossover operation will be utilised, in order to 
introduce novel combinations of the genetic material. After 
crossover, chromosomes are subjected to mutation. A random 
gene of a random chromosome is selected and mutated, by 
changing its value from 0 to 1, or vice versa. Mutation 
operation increases the population variability, thus helping to 
prevent irrecoverable loss of potentially important information 
concerning the solutions of the problem at hand. The iteration 



stops when an arbitrarily acceptable solution is reached or after 
a given number of generations. 

III. SIMULATION 
The proposed model is based on a simulation environment, 

which generates a Spatial Iterated Prisoner’s Dilemma game on 
a CA lattice. This simulation environment has been developed 
using MATLAB. Considering the cores of a homogeneous 
multicore system to be identical, they are represented by 
players - CA cells, which are placed on a square grid. Here, the 
Moore neighborhood was used. Furthermore, periodic and 
adiabatic boundary conditions were selected in order to 
simulate different configurations. 

The equivalent of the model to a real-life multicore 
processor’s behavior is the following. When a core is assigned 
with high computation load, or it “defects”, it is natural that it 
will require more shared memory resources in order to 
complete it. Moreover, it was assumed that if there is no 
available memory resources, the core, in need of them, must 
wait until some resources are accessible, decreasing the 
performance of the system. On the other hand, if a core 
“cooperates” or is assigned with lower computation load, it 
does not need too many resources, to accomplish a task. 
Consequently, in a game of two cores, if both “defect” or need 
resources, the payoff is 1/1, simulating the low performance of 
the system, consisting of two “greedy” cores. However, if 
neither needs excessive resources (cooperation) there is no 
bottleneck experienced, and as a result the sum of the collected 
score of both players is the highest possible (3/3). Finally if one 
needs resources while the other does not, the performance of 
the system is higher than the first example, but lower than the 
latter (5/0). 

To complete one round of the game, each player conflicts 
with the players composing its neighborhood. The result of this 
conflict, which is summed to the results gained from earlier 
rounds, is subject to the moves each player does and shown in 
Table I. If S(n) is the total score a player has achieved until 
round n and P1, P2, P3 and P4 the payoffs from the interaction 
between the player and each one of its neighbors on that round, 
then its total score on the round n+1 will be: 

( ) ( ) 431 21 PPPPnSnS ++++=+                (5) 

The choice of the move made for every round by each core 
of the processor, i.e. player, is determined by the strategy (local 
rule) of every CA cell. Note that for the rest of the manuscript 
the term player, accordant with game theory terminology, will 
be used. 

Furthermore, altering the initialization parameters of the 
proposed model, results in simulating systems with different 
configurations. These parameters are the number of players 
forming the CA grid, the local rule or strategy followed by 
each player, the type of the CA neighborhood and the boundary 
conditions of the grid. 

The strategies that a player can adopt are separated into the 
dynamic and the static ones. The static strategies are the 
defective and the cooperative. Defective strategy is followed by 
a player that always defects. Cooperative strategy is followed 

by a player that always cooperates. The dynamic strategies are 
the random, Tit-for-Tat and Pavlov strategy. Here, only 
random strategy was used, which dictates the player to choose 
with a specific possibility if he will defect or cooperate. 
Moreover, Tit-for-Tat is followed by a player that cooperates 
on the first round and then replicates the moves made by other 
players and Pavlov is followed by a player that repeats its 
former choice whenever it earns a high payoff like 5 or 3 and 
switches that choice whenever it earns a low payoff like 1 or 0. 

It must be pointed out that the initial model proposed in 
[12], was altered in order to simulate the real multicore system 
that was used for profiling. The model used here, was modified 
from the initial in terms of the type of the CA neighborhood, 
the size of the CA grid and the boundary conditions. 
Furthermore, the possibilities of the Random strategy have 
been calibrated based on data from the profiling of Phoenix 
from its application to a multi-core processing system. 

Moreover a new strategy is introduced in this paper that uses 
a genetic algorithm (GA). The algorithm collects data from 
every three rounds to decide the moves the player will do for 
the next three rounds. It should be noted that different numbers 
of rounds for the GA application were tested several times and 
for different tactics in order to provide more fruitful results in 
correspondence to the requested system performance. In 
correspondence, the simulation has been initialized to run for 
three rounds, in order to make it easier for the GA players to 
choose the best chromosomes. For the first three rounds the 
player cooperates with all his neighbors. After that and at the 
end of every set of three rounds, the selection phase is initiated. 
The fitness proportionate selection method is used in order to 
find two superior chromosomes, from the available, which are 
the moves the players’ neighbors did in these three games. 
Using the philosophy of that method, the score of every 
neighbor is normalized such that they sum up to 1, and then the 
chromosomes are selected with probability similar to the value 
of the normalized scores. As a result a strategy of a player with 
a small score can also be selected. 

Then, the algorithm decides the moves that the player will 
follow in the next set of three games. This is done by the 
Uniform Crossover method [29]. This method uses for the 
offspring one of the parents’ gene with probability of 50%. 
Moreover, although, mutation is a basic genetic operand in 
GAs, this implementation limits its usage in less than 1%. This 
choice was made, due to the fact that applying mutation in 
every turn to a chromosome consisting of three bits, will alter 
the chromosome by 30%, thus leading to huge alterations of 
the GA proposed best solutions. For further understanding, the 
outline of the genetic crossover strategy algorithm is presented: 
Chromosome=“111” (The first three moves of the player is to 
cooperate) 
FOR 200 game rounds 

IF  (first round in a set of three) 
Use 1st gene-bit of the present chromosome 

ELSE IF  (second round in a set of three) 
Use 2nd gene-bit of the present chromosome 

ELSE IF  (third round in a set of three) 
Use 3rd gene-bit of the present chromosome 

END IF 
IF (third round in a set of three) 



Select with proper probability two chromosomes 
(the last 3 moves of  two  neigbors) 
Crossover the chromosomes (use with 50% 
chance one of each chromosomes’ gene-bits) 
Save the final chromosome (consisting three 
moves-bits for the next three games) 

 END IF 
END FOR 

IV. REAL MULTICORE SYSTEM CONFIGURATION AND 
COMPARISON WITH THE RESULTS OF THE MODEL 

In order to obtain metrics of a multicore system, Phoenix [7] 
MapReduce runtime was used. MapReduce framework is 
commonly used in distributed systems such as data centers or 
HPC and offers simplicity and scalability for the parallel 
programmers. Phoenix is a multi-core implementation of the 
MapReduce framework and it uses threads to spawn parallel 
Map or Reduce tasks. It also uses shared-memory buffers to 
facilitate communication. The runtime schedules tasks 
dynamically across the available processors. Phoenix was run 
on a shared-memory system described in Table II. 

Using the system described in Table II does not limit the 
potentials of the proposed model. Note that the model can be 
altered to simulate a high number of players, different type of 
neighborhood and even another payoff table. Altering these 
parameters can capture different trade-offs appearing in 
different types of microprocessors. 

TABLE II.  PROCESSOR SPECIFICATIONS 
Processor Intel Core i7-2600 
# of Cores 4 

# of Threads 8 
Clock Speed 3.4 GHz 

L1 Data 32 KB 
L2 (Unified) 256 KB 

Third Level (LLC) 8 MB 
RAM 16GB 

 
The application used for obtaining metrics was Word Count 

of Phoenix. This application counts the frequency of 
occurrence for each word in a set of files. Two datasets were 
used for benchmarks, one consisting of 50MB and one of 
100MB. These datasets were used because of their great sizes 
that lead the cores to seek shared memory resources.  

To analyze the behavior of Phoenix MapReduce, Callgrind 
was used, a tool provided by Valgrind [15], an instrumentation 
framework for building dynamic analysis tools. Callgrind is a 
call-graph generating cache profiler that records the call history 
among functions in a program's run as a call-graph. Optionally, 
cache simulation and/or branch prediction can produce further 
information about the runtime behavior of an application. 

Two configurations were used for the scope of this work.  

• For the first configuration, Phoenix was set to use 4 cores 
in order to run Word Count, with a 50MB text file input.  

• For the second configuration, Phoenix was set to use 8 
cores in order to run Word Count, with input a 100MB 
text file input.  

The profiling results for these configurations that will be 
used here are the LLC references, which are illustrated in Table 
III, for each thread of the system. This metric was used because 
of the high latency, and as a result the bottleneck encountered 
in LLC memory. Ten runs for each configuration were 
profiled, and the results from a random and the average run 
were used in order to evaluate any variation in the performance 
of the system, caused by scheduling, due to the fact that for all 
runs, no parameter of Phoenix was altered.  

This work is focused in the analysis of the LLC references 
of each thread, because this is the main bottleneck in a 
multicore processor. Obviously, L1 and L2 cache are very 
important for the performance of a processor, however, here, 
the subject is the conflict of the threads to obtain common 
resources. As a result, the behavior of these caches is utilized 
so as to have them as busy as possible along with the profiling 
procedure, where the exact applications were running in order 
to minimize the usage of these memories by MapReduce and 
maximize the MapReduce interference with LLC 

It must be noticed here, that Phoenix is really faster than the 
times presented here. It takes from 3 to 4 seconds to carry out 
any of the configurations. However, running Phoenix under the 
profiling of Callgrind, decelerate the operations significantly. 
As a result, to evaluate the performance of the system, the 
normalized time elapsed will be used, as shown in Table IV. 
Also the LLC references of every thread are normalized to the 
higher value of the LLC references of one thread.  

TABLE III.  LLC REFERENCES FROM PROFILING RESULTS 

#Thread 
Random run 

for first 
configuration 

Average run 
for first 

configuration 

Random run 
for second 

configuration 

Average run 
for second 

configuration 

1 406.464.194 404.382.927 14.668.989 10.668.023 

2 309.057.180 215.988.481 10.309.051 10.624.537 

3 38.092.911 26.600.327 18.644.130 24.341.572 

4 6.544.671 913.410 59.752.921 28.841.226 

5 - - 14.372.546 40.294.950 

6 - - 121.829.852 59.416.156 

7 - - 39.084.467 85.406.044 

8 - - 335.067.602 394.640.816 

Time 
elapsed 

(sec) 
294 273 534 506 

 

In order to reproduce these behaviors with the theoretical 
model, two configurations were also created.  

• Firstly, to simulate the conflict among 4 cores, a grid of 
2×2 players is set. The Moore neighborhood is selected 
and the boundary conditions are adiabatic. As a result, 
each player has 3 neighbors - all the other participants.  



• Secondly, to simulate the conflict among 8 cores, a grid 
of 3×3 players is set, but the central player is set to busy 
mode, and as a result it does not interact with the others. 
The Moore neighborhood is selected and the boundary 
conditions are periodic. Consequently every player has 7 
neighbors - all the other participants.  

The strategies of the players used in the CA grid, were 
chosen based on the data derived from Table IV. The 
normalized to the highest LLC references amount, results 
corresponds to the possibility of each player to defect. As a 
result the player representing the most “greedy” core of the 
processor, that has a normalized LLC references value of 1.00, 
will adopt the defective strategy. The normalized to the highest 
amount of LLC references, results with values under 0.08 are 
considered of low significance for the simulation, as they refer 
to LLC rarely, and so the threads acquiring these results are 
simulated as players following cooperative strategy. For the 
other threads, their metric results were rounded up and used as 
the possibility of the random strategy to defect. The rounded 
amounts were used in order to have a better understanding and 
comparison of the type of strategy used. Note here, that as 
Phoenix runtime assigns tasks dynamically [7] to threads and 
some tasks may need more resources than others, using the 
random strategy of the proposed model, is a safe choice.  

Consequently, taking into account Table IV, for the random 
run of the first configuration, there is a defective, a cooperative 
and two random (one with 80% possibility to defect and the 
other with 10%) players. For the average run there are two 
cooperative, one defective and one random (with 50% 
possibility to defect) player. Furthermore, for the random run 
of the second configuration, there is one defective, four 
cooperative and three random (with 40, 20 and 10% possibility 
to defect) players. Finally, for the average run of the second 
configuration, there is one defective, four cooperative and three 
random (one with 20% and two with 10% possibility to defect) 
players. 

TABLE IV.  NORMALIZED PROFILING RESULTS 

#Thread 
Random run 

for first 
configuration 

Average run 
for first 

configuration 

Random run 
for second 

configuration 

Average run 
for second 

configuration 

1 1 1 0,04 0,03 

2 0,76 0,53 0,03 0,03 

3 0,09 0,06 0,06 0,06 

4 0,02 0,002 0,18 0,07 

5 - - 0,04 0,10 

6 - - 0,36 0,15 

7 - - 0,12 0,22 

8 - - 1 1 

Normalized 
time 

elapsed  
1 0.93 1 0.95 

 

The results of these configurations acquired with the model 
after 200 rounds are shown in Figs. 1 and 2 per thread and in 
total in Table V. The score, the community of players 

collected, as mentioned in Section II, corresponds to the LLC 
references attempted by each core in a time interval. 
Consequently, a higher total score means a higher performance 
for the system, which can be translated as less execution time. 
The reason for presenting the normalized score and the 
inverted normalized score in Table V is to be able to compare 
the results acquired by the model with the ones obtained from 
profiling a real system.  

Note that in Figs. 1 and 2, the x axis describes the strategy 
of every player, participating in the game. The first line (blue) 
describes the random run and the second line (red) the average 
run of the application in the same configuration. Furthermore, 
the y axis depicts the LLC references succeeded by every 
player at the end of 200 rounds. 

Furthermore, in order to increase the performance of the 
system, the GA strategy was adopted by some players of the 
community. The better performance of the system is expected 
due to the fact that while there is the same computation load, it 
is assigned to more threads than the previous configurations. 
As a result, the load is evenly assigned and the system executes 
the application faster and more efficiently. The simulation 
configurations run for 200 rounds with the strategies described 
above, with some strategies altered to GA. 

TABLE V.  RESULTS ACQUIRED WITH THE MODEL 

 
Random run 

for first 
configuration 

Average run 
for first 

configuration 

Random run 
for second 

configuration 

Average run 
for second 

configuration 
Normalized 

time 
elapsed 

1 0.93 1 0.95 

Total score 
of the 

community 
5662 6094 30884 31468 

Normalized 
score 

1 1.076 1 1.02 

Inverted 
normalized 

score 
1 0.929 1 0.98 

 

 
Figure 1.  Results per core from simulation with 4 cores after 200 rounds. 

The x axis represents the strategy followed by an individual player/core 
throughout the Random and the Average run. 

For the random run of the first configuration of the model, 
simulating the 4 cores instance, the static strategies (defective 



and cooperative) are changed into GA strategies. On the other 
hand the random strategies remain, keeping the possibilities 
used previously. This way the whole system becomes dynamic 
and also uses an adaptive method to spread the load. The 
results after 200 rounds for the random and the optimized run 
are illustrated in Fig. 3. 

 
Figure 2.  Results per core from simulation with 8 cores after 200 rounds. 

The x axis represents the strategy followed by an individual player/core 
throughout the Random and the Average run. 

 
Figure 3.  Results per core from simulation with 4 cores after 200 rounds. 

The x axis represents the strategy followed by an individual player/core 
throughout the Random and the Optimized run. 

Furthermore, for the random run of the second 
configuration of the model, simulating the 8 cores instance, 
three players were chosen to change their strategies (two 
cooperative and the defective). Here, only three static strategies 
change, because the computation load of the defective player 
can be sufficiently divided to three players. Splitting the load of 
one player to a bigger number of players, would have the 
opposite results. The results after 200 rounds for the random 
and the optimized run are illustrated in Fig. 4.  

Finally, the comparison of the overall results of the 
community for the random and the optimized runs, are 
presented in Table VI. There is an increase in the performance 
of the system, 10% for the first configuration and 2.3% for the 
second configuration. 

It must be pointed out, that for the optimization of the 
system in both configurations, static strategies were chosen to 
change into GA ones, because these strategies cannot reply to 
the changing dynamics of random players – or in a real system 
with the altering of memory needs by some cores. Furthermore, 
many strategies were kept the same, in order to have a 

comparison with the applications used in the profiling of the 
real system. 

 
Figure 4.  Results per core from simulation with 8 cores after 200 rounds. 

The x axis represents the strategy followed by an individual player/core 
throughout the Random and the Optimized run. 

TABLE VI.  RESULTS ACQUIRED WITH THE MODEL 

 
Random run 

for first 
configuration 

Optimized 
run for first 

configuration 

Random run 
for second 

configuration 

Optimized 
run for 
second 

configuration 
Total score 

of the 
community 

5662 6286 30884 31606 

Normalized 
score 

1 1.11 1 1.023 

Inverted 
normalized 

score 
1 0.9 1 0.977 

 

V. CONCLUSIONS AND DISCUSSION 
In this paper, the memory resources of a multicore processor 

system, in specific the on-chip memory per processor 
redistribution, so as to meet higher performance based on the 
basic concepts of game theory with the help of adaptive 
computational tools like CAs, GAs and the iterated spatial 
prisoner’s dilemma game was examined. The proposed model 
originally intrigued by a classic model of the dynamics of 
cooperation and noncooperation, namely the iterated spatial 
prisoner’s dilemma, was depictured in a CA lattice and in order 
to take advantage of “rational”, namely genetic, strategies used 
the above game as the presented CA evolution rule. 

In the view of the foregoing, software simulations were 
established, in order to reproduce the results of the metrics 
obtained by profiling tools running on a multicore shared-
memory system. As presented by the simulation results, it can 
be safely admitted that the theoretical results can approach the 
results of a real multicore system. However, the deflection 
noticed to the theoretical results compared to the real system 
metrics, can be explained by the simplicity of the model and 
the use of specific metrics of the real system, namely, only 
LLC references. Using metrics of more shared resources, such 
as the communication bus, and a more complicated model, 
will, assumingly, lead to more accurate simulations.  



Moreover, the usage of adaptive strategies revealed the 
potential enhancement of the performance of the system. 
Nonetheless, the parameters that initialize the theoretical model 
enable the simulation of the vast majority of multicore systems. 
The most significant of these parameters are the number of 
players, the type of neighborhood, the local rule strategy and 
the payoff table.  

Nevertheless, as future work, some more technical details 
regarding the on-chip memory usage in multicore processors 
could be also taken into account in order to alter the payoff 
table to obtain results closer to the real system metrics. Some 
strategies could be also further differed, after the mapping of 
needs, for utilization of various resources, of often used 
applications. Furthermore, profiling different configurations of 
Phoenix MapReduce can provide more case studies to compare 
with results from the model. These configurations may be 
another amount of cores participating in the operation, another 
amount of Map or Reduce workers and different amount of 
tasks. Finally, the implementation of rational, more adaptive 
strategies with the help of evolutionary or swarm intelligence 
techniques in the proposed model, especially applied to the 
selection of the under study CA rules could also lead to a 
greater performance in memory management of the system. 
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