
14 Xcell Journal Fourth Quarter 2013

XCELLENCE IN NEW APPLICATIONS

A novel reconfigurable hardware accelerator
speeds the processing of applications based on
the MapReduce programming framework.

Accelerate Cloud Computing
with the Xilinx Zynq SoC

E
merging Web applications like
streaming video, social networks and
cloud computing have created the
need for warehouse-scale data cen-

ters hosting thousands of servers. One of the
main programming frameworks for processing
large data sets in the data centers and other clus-
ters of computers is the MapReduce framework
[1]. MapReduce is a programming model for pro-
cessing large data sets using a high number of
nodes. The user specifies the “Map” and the
“Reduce” functions, and the MapReduce sched-
uler distributes the tasks to the processors.

One of the main advantages of the
MapReduce framework is that it can be hosted
in heterogeneous clusters consisting of different
types of processors. The majority of data cen-
ters are based on high-performance, general-
purpose devices such as the Intel Xeon, AMD
Opteron and IBM Power processors. However,
these processors consume a lot of power even in
cases when the applications are not so computa-
tionally intensive but rather, are I/O-intensive.

To reduce the power consumption of the
data centers, microservers have recently gained
attention as an alternative platform. These low-
cost servers are generally based on energy-effi-
cient processors such as the ones used in
embedded systems (for example, ARM® proces-
sors). Microservers mainly target lightweight or
parallel applications that benefit most from indi-
vidual servers with sufficient I/O between nodes
rather than high-performance processors.
Among the many advantages of the microserver
approach are reduced acquisition cost, reduced
footprint and high energy efficiency for specific
types of applications.

In the last few years several vendors, such
as SeaMicro and Calxeda, have developed
microservers based on embedded processors.
However, the MapReduce framework allo-
cates several resources from the embedded
processors, reducing the overall performance
of the cloud-computing application running on
these platforms.

To overcome this problem, our team has devel-
oped a hardware acceleration unit for the
MapReduce framework that can be combined
efficiently with ARM cores in fully programmable
platforms. To develop and evaluate the proposed
scheme, we selected the Xilinx® Zynq®-7000 All
Programmable SoC, which comes hardwired
with a dual-core Cortex-A9 processor onboard.

X C E L L E N C E I N N E W A P P L I C AT I O N S

Fourth Quarter 2013 Xcell Journal 15

by Christoforos Kachris
Researcher
Democritus University of Thrace
ckachris@ee.duth.gr

Georgios Sirakoulis
Professor
Democritus University of Thrace
gsirak@ee.duth.gr

Dimitrios Soudris
Professor
National Technical University of Athens (NTUA)
dsoudris@microlab.ntua.gr

mailto:ckachris@ee.duth.gr
mailto:gsirak@ee.duth.gr
mailto:dsoudris@microlab.ntua.gr

MAPREDUCE HARDWARE
ACCELERATOR UNIT
The MapReduce acceleration unit han-
dles the efficient implementation of the
Reduce tasks. Its main job is to merge
the intermediate key/value pair from all
the processors and to provide a fast
access for the insertion of new keys
and the updates (accumulation) of
key/value pairs. We implemented the
MapReduce accelerator as a coproces-
sor that can be augmented to multicore
processors through a shared bus. The
block diagram of the accelerator inside
multicore SoCs is shown in Figure 1.

As the figure shows, we have incor-
porated the hardware accelerator unit
into a Zynq SoC equipped with a pair of

ARM Cortex™-A9 cores. Each of these
cores has its own instruction- and
data-level cache, each of which com-
municates with the peripheral using a
shared interconnection network. The
accelerator communicates with the
processors through a high-perform-
ance bus that is attached to the inter-
connection network. The processors
emit the key and the value that have to
be updated to the MapReduce acceler-
ator by accessing specific registers of
the accelerator. After the end of the
Map tasks, the accelerator has already
accumulated the values for all the
keys. The processors retrieve the final
value of a key by sending only the key
to the accelerator and reading the final

value from the register. In this way, the
proposed architecture can accelerate
the MapReduce processing by sending
a nonblocking transaction to the
shared bus that includes the key/value
pair that needs updating.

PROGRAMMING FRAMEWORK
Figure 2 shows the programming
framework of the MapReduce applica-
tions using the hardware accelerator.
In the original code, the Map stage
emits the key/value pairs and the
Reduce stage searches for this key and
updates (accumulates) the new value
by consuming several CPU clock
cycles. By contrast, using the
MapReduce accelerator, the Map stage

16 Xcell Journal Fourth Quarter 2013

X C E L L E N C E I N N E W A P P L I C AT I O N S

Xilinx Zynq SoC

=

+ +

…

=

ARM
Cortex-A9

ARM
Cortex-A9

32KB
Icache

32KB
Dcache

32KB
Icache

32KB
Dcache

Interconnect
Application Processors

Programmable Logic

AXI High-Performance Bus

AXI
Interface Addr. Key Tags Value

0x1

0x2

0x3

0x4

...

Key
64 12

Hash1

Hash2
12

64 8 32

Addr. Key Tags Value

0x1

0x2

0x3

0x4

...

64 8 32

Value

32

key1
value1

key2
value2

...

Registers

FSM
Hit2

Hit1

Figure 1 – Block diagram of the MapReduce hardware accelerator

just emits the key/value pair; the
MapReduce accelerator merges all the
key/value pairs and updates the rele-
vant entries, thus eliminating the
Reduce function.

Communication from the application
level running under Linux to the hard-
ware accelerator takes place using the
memory map (mmap) system call. The
mmap system call is used to map a
specified kernel memory area to the
user layer, so that the user can read or
write on it depending on the attribute
provided during the memory mapping.

We use a control unit to access these
registers and serialize the updates of
the key/value elements. The key/value
pairs are stored in a memory unit that
you can configure based on the applica-

tion requirements. The memory block
contains the key, the value and some
bits that are used as tags. These tags
indicate if the memory line is empty
and whether it is valid. To accelerate
the indexing of the keys, a hash mod-
ule translates the initial key to the
address of the memory block.

In the current configuration, we
have designed the memory structure to
host 2K key/value pairs. Each key can
be 64 bits long (eight characters) and
the value can be 32 bits long. The total
size of the memory structure is 2K x
104 bits. The first 64 bits store the key
in order to compare whether we have a
hit or a miss using the hash function.
The next 8 bits are used for tags and the
next 32 bits store the value. In the cur-

rent configuration, the maximum value
of a key is 64 bits and a hash function is
used to map the key (64 bits) into the
memory address (12 bits).

CUCKOO HASHING
The hash function can accelerate the
indexing of the keys but it may create a
collision in case two different keys
have the same hash value. To address
this problem, we selected cuckoo
hashing as the best way to resolve hash
collisions. Cuckoo hashing [2] uses
two hash functions instead of only one.
When a new entry is inserted, then it is
stored in the location of the first hash
key. If that location is occupied, the old
entry is moved to its second hash
address and the procedure is repeated
until an empty slot is found. This algo-
rithm provides a constant lookup time
O(1) (lookup requires just inspection
of two locations in the hash table),
while the insert time depends on the
cache size O(n). If the procedure
should enter an infinite loop, the hash
table will be rebuilt.

The cuckoo hashing algorithm can
be implemented using two tables, T1
and T2, for each hash function, each of
size r. For each of these tables, a dif-
ferent hash function is used, h1 and h2
respectively, to create the addresses of
T1 and T2. Every element x is stored
either in T1 or in T2 using hash func-
tion h1 or h2 respectively—that is,
T1[h1(x)] or T2[h2(x)]. Lookups are
therefore straightforward. For each of
the element x that we need to look up,
we just check the two possible loca-
tions in tables T1 and T2 using the
hash functions h1 and h2, respectively.

To insert an element x, we check to
see if T1[h1(x)] is empty. If it is empty,
then we store the element in this loca-

X C E L L E N C E I N N E W A P P L I C AT I O N S

Fourth Quarter 2013 Xcell Journal 17

Original Code:
Map{

Emit_Intermediate(key, value);
}
Reduce(key, value){

search(key);
update(key, value);

}

Accelerator code:
Map{

Emit_Intermediate_Accel(key,value);
}
…
Emit_Intermediate_Accel(key,value)
{

mmapped_addr = mmap(MapReduce_Accel);
send(mmapped_addr + 0x4, key);
send(mmapped_addr + 0x8, value);

}

Figure 2 – The programming framework

The hash function can accelerate the indexing of
the keys, but it may create a collision if two keys have

the same hash value. We selected cuckoo hashing
as the best way to resolve hash collisions.

tion. If not, we replace the element y
that is already there in T1[h1(x)] with x.
We then check whether T2[h2(y)] is
empty. If it is empty, we store the ele-
ment in this location. If not, we replace
the element z in T2[h2(y)] with y. We
then try to place z in T1[h1(z)], and so
on, until we find an empty location.

According to the original cuckoo
hashing paper [2], if an empty location
is not found within a certain number
of tries, the suggested solution is to
rehash all of the elements in the table.
In the current implementation of our
software, whenever the operation
enters such a loop, it stops and
returns zero to the function call. The
function call then may initiate a
rehashing or it may choose to add the
specific key in the software memory
structure as in the original code.

We implemented cuckoo hashing
for the MapReduce accelerators as
depicted in Figure 1. We used two
Block RAMs to store the entries for
the two tables, T1 and T2. These
BRAMs store the key, the value and
the tags. In the tag field, one bit is
used to indicate whether a specific
row is valid or not. Two hash func-
tions are used based on simple XOR
functions that map the key to an
address for the BRAMs. Every time an
access is required to the BRAMs, the
hash tables are used to create the
address and then two comparators
indicate whether there is a hit on the
BRAMs (i.e., that the key is the same
as the key in the RAM and the valid bit
is 1). A control unit coordinates
access to the memories. We imple-

mented the control unit as a finite
state machine (FSM) that executes the
cuckoo hashing.

PERFORMANCE EVALUATION
We have implemented the proposed
architecture in a Zynq SoC. Specifically,
we mapped the Phoenix MapReduce
framework to the embedded ARM cores
under Linux 3. Whenever the proces-
sors need to update the key/value pairs,
they send the information through spe-
cific function calls. For the perform-
ance evaluation of the system, we used
three applications from the Phoenix

framework, modified to run utilizing the
hardware accelerator: WordCount,
Linear Regression and Histogram.

The proposed scheme is config-
urable and it can be tuned based on
the application requirements. For the
performance evaluation of the
Phoenix MapReduce framework appli-
cation, we have configured the accel-
erator to include a 4K memory unit
(4,096 key/value pairs can be stored:
2K in each BRAM). The maximum size
of each key is 8 bytes.

Table 1 shows the programmable
logic resources of the MapReduce
accelerator. As you can see, the accel-
erator is basically memory-intensive
while the control unit that is used for
the finite state machine and the hash
function occupy only a small portion
of the device.

Figure 3 compares the execution
time of the original applications and
the execution time of the applications
using the MapReduce accelerator.
Both of these measurements are based
on the Xilinx Zynq SoC design.

X C E L L E N C E I N N E W A P P L I C AT I O N S

18 Xcell Journal Fourth Quarter 2013

Resources

Slice Registers

Slice LUTs

Block RAMs

Number

843

903

29

Percentage

< 1%

< 1%

21%

Original 8 7 6
Reduce 7 7 5

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

WordCount

Sp
ee

d
-u

p

Histogram
Application

Execution Time of the MapReduce Applications

Ex
ec

u
ti

o
n

 t
im

e

Original Accelerated Speed-up

Linear
Regression

Figure 3 – The overall system speed-up was 1.23x to 1.8x,
depending on the application.

Table 1 – Programmable logic resource allocation

In the case of the WordCount, in
the original application the Map task
identifies the words and forwards
them to the Reduce task. This task
gathers all the key/value pairs and
accumulates the value for each key.
In the accelerator case, the Map task
identifies the words and forwards the
data to the MapReduce accelerator
unit through the high-performance
AXI bus. The key/value pairs are
stored in the registers (which are dif-
ferent for each processor), and then
the accelerator accumulates the val-
ues for each key by accessing the
memory structure.

PROCESSOR OFFLOADED
The reduction in execution time is
due to the fact that in the original
code, the Reduce task has to first
load the key/value table, then search
through the table for the required
key. Then, after the accumulation of
the value, the Reduce task must store
the key back on the memory. By uti-
lizing the MapReduce accelerator, we
offload the processor from this task
and thus reduce the total execution
time of the MapReduce applications.
Cuckoo hashing (O(1)) keeps the
searching time of the key in the
accelerator, while the processor is
not blocked during the update of the
key/value pair.

As Figure 3 shows, the overall speed-
up of the system is from 1.23x to 1.8x.
The speed-up depends on the character-
istics of each application. In cases
where the mapping functions are more
complex, the MapReduce accelerator
provides a lesser speed-up. In applica-
tions with simpler mapping functions
that are allocated less of the overall exe-
cution time, the speed-up is greater,
since a high portion of the total execu-
tion time is used for communication
between the Map and the Reduce func-
tions. Therefore, in these cases the
MapReduce accelerator can provide
much more acceleration. Furthermore,
the MapReduce accelerator results in
the creation of fewer new threads in the

processors, which translates into less
context switches and therefore reduced
execution time. For example, in the case
of WordCount, the average number of
context switches dropped from 88 to 60.

The MapReduce framework can be
widely used as a programming frame-
work both for multicore SoCs and for
cloud-computing applications. Our
proposed hardware accelerator can be
used to reduce the total execution time
for the multicore SoC platforms such
as the Xilinx Zynq SoC and the cloud-
computing applications based on the
MapReduce framework by accelerat-
ing the Reduce task of these applica-
tions. For more information on accel-
erating cloud computing with the Zynq
SoC platform, contact the lead author,
Dr. Christoforos Kachris, or visit
www.green-center.weebly.com.

References

1. J. Dean and S. Ghemawat,

“MapReduce: Simplified Data Processing

on Large Clusters,” Commununications

of the ACM, vol. 51, no. 1, pp. 107–113,

January 2008

2. R. Pagh and F. F. Rodler, “Cuckoo

Hashing,” Proceedings of ESA 2001,

Lecture Notes in Computer Science, vol.

2161, 2001

3. C. Ranger, R. Raghuraman, A.

Penmetsa, G. Bradski and C. Kozyrakis,

“Evaluating MapReduce for Multicore and

Multiprocessor Systems,” Proceedings of

the 2007 IEEE 13th International

Symposium on High Performance

Computer Architecture, HPCA ’07, 2007,

pp. 13–24

Acknowledgments

The authors would like to thank the Xilinx

University Program for the kind donation

of the Xilinx EDA tools. The research proj-

ect is implemented within the framework

of the action “Supporting Postdoctoral

Researchers” of the operational program

“Education and Lifelong Learning”

(Action’s Beneficiary: GSRT) and is co-

financed by the European Social Fund

(ESF) and the Greek State.

Fourth Quarter 2013 Xcell Journal 19

X C E L L E N C E I N N E W A P P L I C AT I O N S

FPGA S OLUTIONS

? 100K Logic Cells + 240 DSP Slices
? DDR3 SDRAM + Gigabit Ethernet
? SO-DIMM form factor (68 x 30 mm)

Mars AX3 Artix®-7 FPGA Module

from

Mars ZX3 SoC Module

? Xilinx Zynq™-7000 All Programmable SoC
(Dual Cortex™-A9 + Xilinx Artix®-7 FPGA)

? DDR3 SDRAM + NAND Flash
? Gigabit Ethernet + USB 2.0 OTG
? SO-DIMM form factor (68 x 30 mm)

We speak FPGA.

www.enclustra.com

? Xilinx Kintex™-7 FPGA
? High-performance DDR3 SDRAM
? USB 3.0, PCIe 2.0 + 2 Gigabit Ethernet ports
? Smaller than a credit card

Mercury KX1 FPGA Module

FPGA Manager Solution

Simple, fast host-to-FPGA data transfer, for PCI
Express, USB 3.0 and Gigabit Ethernet. Supports
user applications written in C, C++, C#, VB.net,

MATLAB®, Simulink® and LabVIEW.

http://www.green-center.weebly.com
http://www.enclustra.com

